Abstract Marine carbonate rocks in China are featured by old age,deep burial,and strongly diagenetic modification during the burial stage. As oil and gas exploration gradually extents towards “older”,“deeper”,and “more complex”deep and ultra-deep layers,the genesis and distribution patterns of carbonate reservoirs have become key factors affecting the efficiency of oil and gas exploration and development. In recent years,a series of exploration breakthroughs have been made in multiple exploration fields in the Tarim,Sichuan,and Ordos basins. Meanwhile,substantial progress has been made both in the geological theory and in the related technologies of ancient deep carbonate reservoirs. Advancements in geological theory include the following aspects: (1)porosity formecl under subaerial environment constitutes the basis of the deeply-buried carbonate reservoir size;(2)the preservation of porosity during shallow burial period is the key to the size and the quality of the deeply-buried dolomite reservoir;and(3)tectonic activity-driven deep fluid movements play an important role in modifying the quality of deeply-buried carbonate reservoir. Technological advancements include: (1)geochemically experimental analysis techniques such as surface scanning of trace rare earth elements,laser-ablation U-Pb dating,clumped isotopes and non-traditional stable isotopes;and(2)high-temperature and high-pressure dissolution simulation techniques. The deepening of exploration realm and the progress of analytical techniques have significantly improved the understanding of the development and distribution of large-scale high-quality reservoirs in deeply buried fields of the three major basins,and built the foundation for major breakthroughs in oil field exploration in the future.
Fund:; Scientific Research and Technology Development Project of PetroChina(No.2021DJ0503)
Corresponding Authors:
SHEN Anjiang,born in 1965,is a professor-level senior engineer with Ph.D. He is mainly engaged in research on carbonate reservoir.
About author: QIAO Zhanfeng,born in 1983,is a senior engineer with Ph.D. He is mainly engaged in research on carbonate reservoir geology. E-mail: qiaozf_hz@petroChina.com.cn.
Cite this article:
QIAO Zhanfeng,YU Zhou,SHE Min et al. Progresses on ancient ultra-deeply buried marine carbonate reservoir in China[J]. JOPC, 2023, 25(6): 1257-1276.
QIAO Zhanfeng,YU Zhou,SHE Min et al. Progresses on ancient ultra-deeply buried marine carbonate reservoir in China[J]. JOPC, 2023, 25(6): 1257-1276.
[1] 蔡春芳,赵龙. 2016. 热化学硫酸盐还原作用及其对油气与储集层的改造作用: 进展与问题. 矿物岩石地球化学通报, 35(5): 851-859. [Cai C F,Zhao L. 2016. Thermochemical sulfate reduction and its effects on petroleum composition and reservoir quality: advances and problems. Bulletin of Mineralogy,Petrology and Geochemistry, 35(5): 851-859] [2] 陈红汉,鲁子野,曹自成,韩俊,云露. 2016. 塔里木盆地塔中地区北坡奥陶系热液蚀变作用. 石油学报, 37(1): 43-63. [Chen H H,Lu Z Y,Cao Z C,Han J,Yun L. 2016. Hydrothermal alteration of Ordovician reservoir in northeastern slope of Tazhong uplift,Tarim Basin. Acta Petrolei Sinica, 37(1): 43-63] [3] 丁振纯,高星,董国栋,唐瑾,惠江涛,王少依,赵振宇,王慧. 2021. 鄂尔多斯盆地奥陶系盐下白云岩储层特征、成因及分布. 海相油气地质, 26(1): 16-24. [Ding Z C,Gao X,Dong G D,Tang J,Hui J T,Wang S Y,Zhao Z Y,Wang H. 2021. Characteristics,genesis and distribution of the Ordovician pre-salt dolomite reservoirs in Ordos Basin. Marine Origin Petroleum Geology, 26(1): 16-24] [4] 杜金虎,潘文庆. 2016. 塔里木盆地寒武系盐下白云岩油气成藏条件与勘探方向. 石油勘探与开发, 43(3): 327-339. [Du J H,Pan W Q. 2016. Accumulation conditions and play targets of oil and gas in the Cambrian subsalt dolomite,Tarim Basin,NW China. Petroleum Exploration and Development, 43(3): 327-339] [5] 付金华,于洲,李程善,王维斌,黄正良,吴兴宁,王少依. 2021. 鄂尔多斯盆地东部米探1井奥陶系马四段天然气勘探新发现及勘探方向. 天然气工业, 41(12): 17-27. [Fu J H,Yu Z,Li C S,Wang W B,Huang Z L,Wu X N,Wang S Y. 2021. New discovery and favorable areas of natural gas exploration in the 4th Member of Ordovician Majiagou Formation by Well Mitan 1 in the eastern Ordos Basin. Natural Gas Industry, 41(12): 17-27] [6] 付玲,李建忠,徐旺林,郭玮,李宁熙,张月巧,宋微,孙远实. 2020. 鄂尔多斯盆地中东部奥陶系盐下深层储层特征及主控因素. 天然气地球科学, 31(11): 1548-1561. [Fu L,Li J Z,Xu W L,Guo W,Li N X,Zhang Y Q,Song W,Sun Y S. 2020. Characteristics and main controlling factors of Ordovician deep subsalt reservoir in central and eastern Ordos Basin. Natural Gas Geoscience, 31(11): 1548-1561] [7] 何治亮,马永生,朱东亚,段太忠,耿建华,张军涛,丁茜,钱一雄,沃玉进,高志前. 2021. 深层—超深层碳酸盐岩储层理论技术进展与攻关方向. 石油与天然气地质, 42(3): 533-546. [He Z L,Ma Y S,Zhu D Y,Duan T Z,Geng J H,Zhang J T,Ding Q,Qian Y X,Wo Y J,Gao Z Q. 2021. Theoretical and technological progress and research direction of deep and ultra-deep carbonate reservoirs. Oil & Gas Geology, 42(3): 533-546] [8] 蒋裕强,陶艳忠,谷一凡,王珏博,强子同,江娜,林刚,蒋婵. 2016. 四川盆地高石梯—磨溪地区灯影组热液白云石化作用. 石油勘探与开发, 43(1): 51-60. [Jiang Y Q,Tao Y Z,Gu Y F,Wang J B,Qiang Z T,Jiang N,Lin G,Jiang C. 2016. Hydrothermal dolomitization in Sinian Dengying Formation,Gaoshiti-Moxi area,Sichuan Basin,SW China. Petroleum Exploration and Development, 43(1): 51-60] [9] 李茜,朱光有,李婷婷,周磊,吴雨轩,田连杰. 2022. 川中地区寒武系洗象池组白云岩Mg同位素特征与成因机制. 石油学报, 43(11): 1585-1603. [Li X,Zhu G Y,Li T T,Zhou L,Wu Y X,Tian L J. 2022. Mg isotopic characteristics and genetic mechanism of dolomite of Cambrian Xixiangchi Formation in central Sichuan Basin. Acta Petrolei Sinica, 43(11): 1585-1603] [10] 李茜,朱光有,李婷婷,艾依飞,张岩,王珊,陈志勇,田连杰. 2023. 塔里木盆地鹰山组白云岩成因与Mg同位素证据. 地学前缘, 30(4): 352-375. [Li X,Zhu G Y,Li T T,Ai Y F,Zhang Y,Wang S,Chen Z Y,Tian L J. 2023. Genesis of dolostone of the Yingshan Formation in Tarim Basin and Mg isotope evidence. Earth Science Frontiers, 30(4): 352-375] [11] 梁金同,文华国,李笑天,乔占峰,佘敏,钟怡江,张浩. 2023. 碳酸盐岩储层埋藏溶蚀改造与水岩模拟实验研究进展. 地球科学, 48(2): 814-834. [Liang J T,Wen H G,Li X T,Qiao Z F,She M,Zhong Y J,Zhang H. 2023. Research progress of burial dissolution and modification of carbonate reservoirs and fluid-rock simulation experiments. Earth Science, 48(2): 814-834] [12] 廖荣峰,汤晶,宋晓波,郝哲敏,王文楷,刘勇. 2022. 川西南下三叠统嘉陵江组四—五段孔隙型储层特征及勘探前景. 石油实验地质, 44(1): 60-70. [Liao R F,Tang J,Song X B,Hao Z M,Wang W K,Liu Y. 2022. Characteristics and exploration potential of porous reservoirs in 4th to 5th members of Lower Triassic Jialingjiang Formation in southwestern Sichuan Basin. Petroleum Geology & Experiment, 44(1): 60-70] [13] 刘文汇,赵恒,刘全有,周冰,张殿伟,王杰,卢龙飞,罗厚勇,孟庆强,吴小奇. 2016. 膏盐岩层系在海相油气成藏中的潜在作用. 石油学报, 37(12): 1451-1462. [Liu W H,Zhao H,Liu Q Y,Zhou B,Zhang D W,Wang J,Lu L F,Luo H Y,Meng Q Q,Wu X Q. 2016. Potential role of gypsum strata series in marine hydrocarbon accumulation. Acta Petrolei Sinica, 37(12): 1451-1462] [14] 吕海涛,韩俊,张继标,刘永立,李映涛. 2021. 塔里木盆地顺北地区超深碳酸盐岩断溶体发育特征与形成机制. 石油实验地质, 43(1): 14-22. [Lü H T, Han J,Zhang J B,Liu Y L,Li Y T. 2021. Development characteristics and formation mechanism of ultra-deep carbonate fault-dissolution body in Shunbei area,Tarim Basin. Petroleum Geology & Experiment, 43(1): 14-22] [15] 马永生,蔡勋育,赵培荣. 2011. 深层、超深层碳酸盐岩油气储层形成机理研究综述. 地学前缘, 18(4): 181-192. [Ma Y S,Cai X Y,Zhao P R. 2011. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir. Earth Science Frontiers, 18(4): 181-192] [16] 穆龙新,万仑昆. 2017. 全球油气勘探开发形势及油公司动态(勘探篇). 北京: 石油工业出版社. [Mu L X,Wan L K. 2017. Global Petroleum E & D Trend and Company Dynamics(Exploration). Beijing: Petroleum Industry Press] [17] 乔占峰,沈安江,倪新锋,朱永进,严威,郑剑锋,黄理力,孙晓伟. 2019. 塔里木盆地下寒武统肖尔布拉克组丘滩体系类型及其勘探意义. 石油与天然气地质, 40(2): 392-402. [Qiao Z F,Shen A J,Ni X F,Zhu Y J,Yan W,Zheng J F,Huang L L,Sun X W. 2019. Types of mound-shoal complex of the Lower Cambrian Xiaoerbulake Formation in Tarim Basin,northwest China,and its implications for exploration. Oil & Gas Geology, 40(2): 392-402] [18] 乔占峰,张哨楠,沈安江,胡安平,梁峰,罗宪婴,佘敏,吕学菊. 2020. 基于激光U-Pb定年的埋藏白云岩形成过程: 以塔里木盆地永安坝剖面下奥陶统蓬莱坝组为例. 岩石学报, 36(11): 3493-3509. [Qiao Z F,Zhang S N,Shen A J,Hu A P,Liang F,Luo X Y,She M,Lü X J. 2020. Laser ablated U-Pb dating-based determination of burial dolomitization process: a case study of Lower Ordovician Penglaiba Formation of Yonganba outcrop in Tarim Basin. Acta Petrologica Sinica, 36(11): 3493-3509] [19] 乔占峰,邵冠铭,罗宪婴,曹鹏,孙晓伟,沈安江. 2021. 埋藏白云岩成因类型与规模储层发育规律: 基于元素面扫和激光U-Pb定年的认识. 天然气工业, 41(9): 46-56. [Qiao Z F,Shao G M,Luo X Y,Cao P,Sun X W,Shen A J. 2021. Genetic classification and large-scale reservoir development law of burial dolomite: cognition based on LA-ICP-MS trace elemental mapping and U-Pb dating. Natural Gas Industry, 41(9): 46-56] [20] 乔占峰,张哨楠,沈安江,佘敏,黄理力,李文正,邵冠铭,戴传瑞. 2022. 塔里木和四川盆地白云岩规模优质储层形成与发育控制因素. 石油与天然气地质, 43(1): 92-104. [Qiao Z F,Zhang S N,Shen A J,She M,Huang L L,Li W Z,Shao G M,Dai C R. 2022. Controls on formation and development of large-sized high-quality dolomite reservoirs in the Tarim and Sichuan Basins. Oil & Gas Geology, 43(1): 92-104] [21] 乔占峰,沈安江,梁峰,邵冠铭,张天付,罗宪婴,孙晓伟,董建华. 2023. 基于镁同位素的规模埋藏白云岩形成过程: 以塔里木盆地蓬莱坝组为例. 地质学报, 97(7): 2293-2310. [Qiao Z F,Shen A J,Liang F,Shao G M,Zhang T F,Luo X Y,Sun X W,Dong J H. 2023. Magnesium isotope-based forming process of large sized burial dolomite: a case study of the Penglaiba Formation in Tarim Basin. Acta Geologica Sinica, 97(7): 2293-2310] [22] 佘敏,蒋义敏,胡安平,吕玉珍,陈薇,王永生,王莹. 2020. 碳酸盐岩溶蚀模拟实验技术进展及应用. 海相油气地质, 25(1): 12-21. [She M,Jiang Y M,Hu A P,Lü Y Z,Chen W,Wang Y S,Wang Y. 2020. The progress and application of dissolution simulation of carbonate rock. Marine Origin Petroleum Geology, 25(1): 12-21] [23] 沈安江,赵文智,胡安平,佘敏,陈娅娜,王小芳. 2015. 海相碳酸盐岩储集层发育主控因素. 石油勘探与开发, 42(5): 545-554. [Shen A J,Zhao W Z,Hu A P,She M,Chen Y N,Wang X F. 2015. Major factors controlling the development of marine carbonate reservoirs. Petroleum Exploration and Development, 42(5): 545-554) [24] 沈安江,胡安平,程婷,梁峰,潘文庆,俸月星,赵建新. 2019. 激光原位U-Pb同位素定年技术及其在碳酸盐岩成岩—孔隙演化中的应用. 石油勘探与开发, 46(6): 1062-1074. [Shen A J,Hu A P,Cheng T,Liang F,Pan W Q,Feng Y X,Zhao J X. 2019. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs. Petroleum Exploration and Development, 46(6): 1062-1074] [25] 沈安江,胡安平,张杰,王小芳,王慧. 2022a. 微生物碳酸盐岩“三因素”控储地质认识和分布规律. 石油与天然气地质, 43(3): 582-596. [Shen A J,Hu A P,Zhang J,Wang X F,Wang H. 2022a. “Three-factor”driven microbial carbonate reservoirs and their distribution. Oil & Gas Geology, 43(3): 582-596] [26] 沈安江,罗宪婴,胡安平,乔占峰,张杰. 2022b. 从准同生到埋藏环境的白云石化路径及其成储效应. 石油勘探与开发, 49(4): 637-647. [Shen A J,Luo X Y,Hu A P,Qiao Z F,Zhang J. 2022b. Dolomitization evolution and its effects on hydrocarbon reservoir formation from penecontemporaneous to deep burial environment. Petroleum Exploration and Development, 49(4): 637-647] [27] 汤良杰,漆立新,邱海峻,云露,李萌,谢大庆,杨勇,万桂梅. 2012. 塔里木盆地断裂构造分期差异活动及其变形机理. 岩石学报, 28(8): 2569-2583. [Tang L J,Qi L X,Qiu H J,Yun L,Li M,Xie D Q,Yang Y,Wan G M. 2012. Poly-phase differential fault movement and hydrocarbon accumulation of the Tarim Basin,NW China. Acta Petrologica Sinica, 28(8): 2569-2583] [28] 谭磊,刘宏,陈康,倪华玲,周刚,张旋,严威,钟原,吕文正,谭秀成,张坤. 2022. 川中高磨地区震旦系灯影组三、四段层序沉积与储集层分布. 石油勘探与开发, 49(5): 871-883. [Tan L,Liu H,Chen K,Ni H L,Zhou G,Zhang X,Yan W,Zhong Y,Lü W Z,Tan X C,Zhang K. 2022. Sequence sedimentary evolution and reservoir distribution in the third and fourth members of Sinian Dengying Formation,Gaomo area,Sichuan Basin,SW China. Petroleum Exploration and Development, 49(5): 871-883] [29] 王清华,杨海军,李勇,吕修祥,张银涛,张艳秋,孙冲,欧阳思琪. 2022. 塔里木盆地富满大型碳酸盐岩油气聚集区走滑断裂控储模式. 地学前缘, 29(6): 239-251. [Wang Q H,Yang H J,Li Y,Lü X X,Zhang Y T,Zhang Y Q,Sun C,Ouyang S Q. 2022. Control of strike-slip fault on the large carbonate reservoir in Fuman,Tarim Basin: a reservoir model. Earth Science Frontiers, 29(6): 239-251] [30] 杨雨,谢继容,赵路子,黄平辉,张玺华,陈聪,张本健,文龙,汪华,高兆龙,山述娇. 2021. 四川盆地茅口组滩相孔隙型白云岩储层天然气勘探的突破及启示: 以川中北部地区JT1井天然气立体勘探为例. 天然气工业, 41(2): 1-9. [Yang Y,Xie J R,Zhao L Z,Huang P H,Zhang X H,Chen C,Zhang B J,Wen L,Wang H,Gao Z L,Shan S J. 2021. Breakthrough of natural gas exploration in the beach facies porous dolomite reservoir of Middle Permian Maokou Formation in the Sichuan Basin and its enlightenment: a case study of the tridimensional exploration of Well JT1 in the central-northern Sichuan Basin. Natural Gas Industry, 41(2): 1-9] [31] 杨雨,文龙,宋泽章,张本健,严威,周刚,田兴旺,钟原,和源,马奎,李堃宇,杨岱林,孙奕婷,葛冰飞,杨振中. 2022. 川中古隆起北部蓬莱气区多层系天然气勘探突破与潜力. 石油学报, 43(10): 1351-1368,1394. [Yang Y,Wen L,Song Z Z,Zhang B J,Yan W,Zhou G,Tian X W,Zhong Y,He Y,Ma K,Li K Y,Yang D L,Sun Y T,Ge B F,Yang Z Z. 2022. Breakthrough and potential of natural gas exploration in multi-layer system of Penglai gas area in the north of central Sichuan paleo-uplift. Acta Petrolei Sinica, 43(10): 1351-1368,1394] [32] 于洲,丁振纯,王利花,张道峰,罗超,魏源,郭玮,魏柳斌. 2018. 鄂尔多斯盆地奥陶系马家沟组五段膏盐下白云岩储层形成的主控因素. 石油与天然气地质, 39(6): 1213-1224. [Yu Z,Ding Z C,Wang L H,Zhang D F,Luo C,Wei Y,Guo W,Wei L B. 2018. Main factors controlling formation of dolomite reservoir underlying gypsum-salt layer in the 5th member of Ordovician Majiagou Formation,Ordos Basin. Oil & Gas Geology, 39(6): 1213-1224] [33] 于洲,周进高,丁振纯,魏柳斌,魏源,吴兴宁,吴东旭,王少依,李维岭. 2020. 鄂尔多斯盆地中东部奥陶系马五$\text{ }\!\!~\!\!\text{ }_{4}^{1\text{a}}$储层特征及成因. 天然气地球科学, 31(5): 686-697. [Yu Z,Zhou J G,Ding Z C,Wei L B,Wei Y,Wu X N,Wu D X,Wang S Y,Li W L. 2020. Reservoir characteristics and genesis of O1$\text{m}_{5}^{4-1\text{a}}$ in the central and eastern Ordos Basin. Natural Gas Geoscience, 31(5): 686-697] [34] 于洲,牛小兵,张才利,马永威,魏柳斌,董国栋,尹陈,贾佳佳. 2021. 鄂尔多斯盆地米脂地区奥陶系马四段储层成因与分布. 天然气工业, 41(12): 38-48. [Yu Z,Niu X B,Zhang C L,Ma Y W,Wei L B,Dong G D,Yin C,Jia J J. 2021. Genesis and distribution of reservoirs of the 4th Member of Ordovician Majiagou Formation in the Mizhi area of the Ordos Basin. Natural Gas Industry, 41(12): 38-48] [35] 于洲,张道锋,王维斌,李鹏,魏柳斌,吴东旭,刘雨昕. 2022. 鄂尔多斯盆地中东部奥陶系盐下沉积特征与有利储集相带. 海相油气地质, 27(4): 371-382. [Yu Z,Zhang D F,Wang W B,Li P,Wei L B,Wu D X,Liu Y X. 2022. Sedimentary characteristics and favorable facies of Ordovician pre-salt strata in central-eastern Ordos Basin. Marine Origin Petroleum Geology, 27(4): 371-382] [36] 于洲,胡子见,王前平,赵静,吴东旭,吴兴宁,李维岭,鲁慧丽,朱文博. 2023. 鄂尔多斯盆地中东部奥陶系深层白云岩储集层特征及主控因素. 古地理学报, 25(4): 931-944. [Yu Z,Hu Z J,Wang Q P,Zhao J,Wu D X,Wu X N,Li W L,Lu H L,Zhu W B. 2023. Characteristics and main controlling factors of the Ordovician deep dolomite reservoirs in mid-eastern Ordos Basin. Journal of Palaeogeography(Chinese Edition), 25(4): 931-944] [37] 张天付,黄理力,倪新锋,熊冉,杨果,孟广仁,郑剑锋,陈薇. 2020. 塔里木盆地柯坪地区下寒武统吾松格尔组岩性组合及其成因和勘探意义: 亚洲第一深井轮探1井突破的启示. 石油与天然气地质, 41(5): 928-940. [Zhang T F,Huang L L,Ni X F,Xiong R,Yang G,Meng G R,Zheng J F,Chen W. 2020. Lithological combination,genesis and exploration significance of the Lower Cambrian Wusonggeer Formation of Kalpin area in Tarim Basin: insight through the deepest Asian onshore well-Well Luntan 1. Oil & Gas Geology, 41(5): 928-940] [38] 赵路子,汪泽成,杨雨,段书府,魏国齐,罗冰,文龙,马石玉,冯庆付,刘静江,孙夕平,谢武仁. 2020. 四川盆地蓬探1井灯影组灯二段油气勘探重大发现及意义. 中国石油勘探, 25(3): 1-12. [Zhao L Z,Wang Z C,Yang Y,Duan S F,Wei G Q,Luo B,Wen L,Ma S Y,Feng Q F,Liu J J,Sun X P,Xie W R. 2021. Important discovery in the second member of Dengying Formation in Well Pengtan1 and its significance,Sichuan Basin. China Petroleum Exploration, 25(3): 1-12] [39] 郑剑锋,沈安江,刘永福,陈永权. 2013. 塔里木盆地寒武系与蒸发岩相关的白云岩储层特征及主控因素. 沉积学报, 31(1): 89-98. [Zheng J F,Shen A J,Liu Y F,Chen Y Q. 2013. Main controlling factors and characteristics of Cambrian dolomite reservoirs related to evaporite in Tarim Basin. Acta Sedimentologica Sinica, 31(1): 89-98] [40] 周进高,姚根顺,杨光,张建勇,郝毅,王芳,谷明峰,李文正. 2015. 四川盆地安岳大气田震旦系—寒武系储层的发育机制. 天然气工业, 35(1): 36-44. [Zhou J G,Yao G S,Yang G,Zhang J Y,Hao Y,Wang F,Gu M F,Li W Z. 2015. Genesis mechanism of the Sinian-Cambrian reservoirs in the Anyue Gas Field,Sichuan Basin. Natural Gas Industry, 35(1): 36-44] [41] 周进高,付金华,于洲,吴东旭,丁振纯,李维岭,唐瑾. 2020. 鄂尔多斯盆地海相碳酸盐岩主要储层类型及其形成机制. 天然气工业, 40(11): 20-30. [Zhou J G,Fu J H,Yu Z,Wu D X,Ding Z C,Li W L,Tang J. 2020. Main types and formation mechanisms of marine carbonate reservoirs in the Ordos Basin. Natural Gas Industry, 40(11): 20-30] [42] 朱东亚,张殿伟,张荣强,冯菊芳,何治亮. 2015. 中国南方地区灯影组白云岩储层流体溶蚀改造机制. 石油学报, 36(10): 1188-1198. [Zhu D Y,Zhang D W,Zhang R Q,Feng J F,He Z L. 2015. Fluid alteration mechanism of dolomite reservoirs in Dengying Formation,South China. Acta Petrolei Sinica, 36(10): 1188-1198] [43] 朱光有,张水昌,梁英波,马永生,戴金星,周国源. 2006. TSR对深部碳酸盐岩储层的溶蚀改造: 四川盆地深部碳酸盐岩优质储层形成的重要方式. 岩石学报, 22(8): 2182-2194. [Zhu G Y,Zhang S C,Liang Y B,Ma Y S,Dai J X,Zhou G Y. 2006. Dissolution and alteration of the deep carbonate reservoirs by TSR: an important type of deep-buried high-quality carbonate reservoirs in Sichuan Basin. Acta Petrologica Sinica, 22(8): 2182-2194] [44] 朱光有,李茜,李婷婷,周磊,吴雨轩,沈冰,甯濛. 2023. 镁同位素示踪白云石化流体迁移路径: 以四川盆地石炭系黄龙组为例. 地质学报, 97(3): 753-771. [Zhu G Y,Li X,Li T T,Zhou L,Wu Y X,Shen B,Ning M. 2023. Magnesium isotope trace dolomitization fluid migration path: a case study of the Carboniferous Huanglong Formation in the Sichuan Basin. Acta Geologica Sinica, 97(3): 753-771] [45] 朱茂,黄世伟,宋叙,王显东,师江波,田小彬,姚倩颖,王慧. 2022. 四川盆地潼南—合川区块中二叠统白云岩储层形成主控因素与勘探区带预测. 中国石油勘探, 27(4): 149-161. [Zhu M,Huang S W,Song X,Wang X D,Shi J B,Tian X B,Yao Q Y,Wang H. 2022. Main controlling factors of the Middle Permian dolomite reservoir and prediction of exploration zone in Tongnan-Hechuan block,Sichuan Basin. China Petroleum Exploration, 27(4): 149-161] [46] 邹才能,杜金虎,徐春春,汪泽成,张宝民,魏国齐,王铜山,姚根顺,邓胜徽,刘静江,周慧,徐安娜,杨智,姜华,谷志东. 2014. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现. 石油勘探与开发, 41(3): 278-293. [Zou C N,Du J H,Xu C C,Wang Z C,Zhang B M,Wei G Q,Wang T S,Yao G S,Deng S H,Liu J J,Zhou H,Xu A N,Yang Z,Jiang H,Gu Z D. 2014. Formation,distribution,resource potential and discovery of the Sinian-Cambrian giant gas field,Sichuan Basin,SW China. Petroleum Exploration and Development, 41(3): 278-293] [47] Al-Ramadan K,Koeshidayatullah A,Cantrell D,Swart P K. 2020. Impact of basin architecture on diagenesis and dolomitization in a fault-bounded carbonate platform: outcrop analogue of a pre-salt carbonate reservoir,Red Sea rift,NW Saudi Arabia. Petroleum Geoscience, 26(3): 448-461. [48] Blättler C L,Miller N R,Higgins J A. 2015. Mg and Ca isotope signatures of authigenic dolomite in siliceous deep-sea sediments. Earth and Planetary Science Letters, 419: 32-42. [49] Catanzaro E J,Murphy T J,Garner E L,Shields W R. 1966. Absolute isotopic abundance ratios and atomic weight of magnesium. Journal of Research of the National Bureau of Standards,70A: 453-458. [50] Coogan L A,Parrish R R,Roberts N M W. 2016. Early hydrothermal carbon uptake by the upper oceanic crust: insight from in situ U-Pb dating. Geology, 44(2): 147-150. [51] Godeau N,Deschamps P,Guihou A,Leonide P,Tendil A,Gerdes A,Hamelin B,Girard J P. 2018. U-Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs: case of the Urgonian Limestone,France. Geology, 46(3): 247-250. [52] Eiler J M,Schauble E. 2004. 18O<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml1-1671-1505-25-6-1257"><mml:msup><mml:mrow><mml:mi mathvariant="normal"> </mml:mi></mml:mrow><mml:mrow><mml:mn>13</mml:mn></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi mathvariant="normal">C</mml:mi></mml:mrow><mml:mrow><mml:mn>16</mml:mn></mml:mrow></mml:msup></mml:math></inline-formula>O in earth's atmosphere. Geochimica et Cosmochimica Acta, 68: 4767-4777. [53] Fantle M S,Higgins J. 2014. The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: implications for the geochemical cycles of Ca and Mg. Geochimica et Cosmochimica Acta, 142: 458-481. [54] Fantle M S,Barnes B D,Lau K V. 2020. The role of diagenesis in shaping the geochemistry of the marine carbonate record. Annual Review of Earth and Planetary Sciences, 48: 549-583. [55] Fiebig J,Daëron M,Bernecker M,Guo W F,Schneider G,Boch R,Bernasconi S M,Jautzy J,Dietzel M. 2021. Calibration of the dual clumped isotope thermometer for carbonates. Geochimica et Cosmochimica Acta, 312: 235-256. [56] Galy A,Belshaw N S,Halicz L,O'Nions R K. 2001. High-precision measurement of magnesium isotopes by multiple-collector inductively coupled plasma mass spectrometry. International Journal of Mass Spectrometry, 208(1-3): 89-98. [57] Galy A,Yoffe O,Janney P E,Williams R W,Cloquet C,Alard O,Halicz L,Wadhwa M,Hutcheon I D,Ramon E,Carignan J. 2003. Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements. Journal of Analytical Atomic Spectrometry, 18(11): 1352-1356. [58] Geske A,Zorlu J,Richter D K,Buhl D,Niedermayr A,Immenhauser A. 2012. Impact of diagenesis and low grade metamorphosis on isotope(δ26Mg,δ13C,δ18O and87Sr/86Sr)and elemental(Ca,Mg,Mn,Fe and Sr)signatures of Triassic sabkha dolomites. Chemical Geology, 332-333: 45-64. [59] Guo C,Chen D Z,Qing H R,Dong S F,Li G R,Wang D,Qian Y X,Liu C G. 2016. Multiple dolomitization and later hydrothermal alteration on the Upper Cambrian-Lower Ordovician carbonates in the northern Tarim Basin,China. Marine and Petroleum Geology, 72: 295-316. [60] Higgins J A,Schrag D P. 2010. Constraining magnesium cycling in marine sediments using magnesium isotopes. Geochimica et Cosmochimica Acta, 74(17): 5039-5053. [61] Higgins J A,Blättler C L,Lundstrom E A,Santiago-Ramos D P,Akhtar A A,Crüger Ahm A S,Bialik O,Holmden C,Bradbury H,Murray S T,Swart P K. 2018. Mineralogy,early marine diagenesis,and the chemistry of shallow-water carbonate sediments. Geochimica et Cosmochimica Acta, 220: 512-534. [62] Hoefs J. 2015. Isotope Fractionation Processes of Selected Elements. In: Stable Isotope Geochemistry. Cham: Springer,35-93. [63] Hu Y J,Cai C F,Liu D W,Pederson C L,Jiang L,Shen A J,Immenhauser A. 2020. Formation,diagenesis and palaeoenvironmental significance of upper Ediacaran fibrous dolomite cements. Sedimentology, 67: 1161-1187. [64] Jacobson A D,Zhang Z F,Lundstrom C,Huang F. 2010. Behavior of Mg isotopes during dedolomitization in the Madison Aquifer,South Dakota. Earth and Planetary Science Letters, 297: 446-452. [65] Jiang L,Hu S Y,Zhao W Z,Xu Z H,Shi S Y,Fu Q L,Zeng H L,Liu W,Fall A. 2018. Diagenesis and its impact on a microbially derived carbonate reservoir from the Middle Triassic Leikoupo Formation,Sichuan Basin,China. AAPG Bulletin, 102(12): 2599-2628. [66] Jiang L,Shen A J,Wang Z C,Hu A P,Wang Y S,Luo X Y,Liang F,Azmy K,Pan L Y. 2022. U-Pb geochronology and clumped isotope thermometry study of Neoproterozoic dolomites from China. Sedimentology, 69: 2925-2945. [67] Li Q,Parrish R R,Horstwood M S A,McArthur J M. 2014. U-Pb dating of cements in Mesozoic ammonites. Chemical Geology, 376(6): 76-83. [68] Liu D W,Cai C F,Hu Y J,Peng Y Y,Jiang L. 2021. Multistage dolomitization and formation of ultra-deep Lower Cambrian Longwangmiao Formation reservoir in central Sichuan Basin,China. Marine and Petroleum Geology, 123: 104752. [69] Lukoczki G,Haas J,Gregg J M,Machel H G,Kele S,John C M. 2019. Multi-phase dolomitization and recrystallization of Middle Triassic shallow marine-peritidal carbonates from the Mecsek Mts.(SW Hungary),as inferred from petrography,carbon,oxygen,strontium and clumped isotope data. Marine and Petroleum Geology, 101: 440-458. [70] MacDonald J M,John C M,Girard J P. 2017. Testing clumped isotopes as a reservoir characterization tool: a comparison with fluid inclusions in a dolomitized sedimentary carbonate reservoir buried to 2-4 km. Geological Society,London,Special Publications, 468(1): 189-202. [71] Mangenot X,Gasparrini M,Gerdes A,Bonifacie M,Rouchon V. 2018. An emerging thermochronometer for carbonate-bearing rocks: Δ47/(U-Pb). Geology, 46: 1067-1070. [72] Methner K,Mulch A,Fiebig J,Wacker U,Gerdes A,Graham S A,Chamberlain C P. 2016. Rapid Middle Eocene temperature change in western North America. Earth and Planetary Science Letters, 450: 132-139. [73] Ngia N R,Hu M Y,Gao D. 2019. Tectonic and geothermal controls on dolomitization and dolomitizing fluid flows in the Cambrian-Lower Ordovician carbonate successions in the western and central Tarim Basin,NW China. Journal of Asian Earth Sciences, 172: 359-382. [74] Ning M,Lang X G,Huang K J,Li C,Huang T Z,Yuan H L,Xing C C,Yang R Y,Shen B. 2020. Towards understanding the origin of massive dolostones. Earth and Planetary Science Letters, 545: 116403. [75] Nuriel P R,Weinberger A R C,Kylander-Clark A R C, Hacker B R,Craddock J P. 2017. The onset of the Dead Sea transform based on calcite age-strain analyses. Geology, 45: 587-590. [76] Qiao Z F,Janson X,Shen A J,Zheng J F,Zeng H L,Wang X F. 2016. Lithofacies,architecture,and reservoir heterogeneity of tidal-dominated platform marginal oolitic shoal: an analogue of oolitic reservoirs of Lower Triassic Feixianguan Formation,Sichuan Basin,SW China. Marine and Petroleum Geology, 76: 290-309. [77] Qiao Z F,Shen A J,Zhang S N,Hu A P,Liang F,Luo X Y,Shao G M,Wang Y S,Zhao J X,Cao P,Jiang L. 2023. Origin of giant Ordovician cavern reservoirs in the Halahatang oil field in the Tarim Basin,northwestern China. AAPG Bulletin, 107(7): 1105-1135. [78] Qing H R,Qiao Z F,Zhang S Y,Cosford J,Hu A P,Liang F,Wang Y S,Zheng J F. 2023. δ26Mg-δ13C-δ18O systems as geochemical tracers for dolomite recrystallization: a case study of lower Ordovician dolomite from Tarim Basin. Chemical Geology, 619: 121302. [79] Roberts N M W,Walker R J. 2016. U-Pb geochronology of calcite-mineralized faults: absolute timing of rift-related fault events on the northeast Atlantic margin. Geology, 44(7): 531-534. [80] Rosman K J R,Taylor P D P. 1998. Isotopic compositions of the elements 1997(Technical Report). Pure and Applied Chemistry,70(1): 217-235. [81] Stolper D A,Eiler J M. 2015. The kinetics of solid-state isotope-exchange reactions for clumped isotopes: a study of inorganic calcites and apatites from natural and experimental samples. American Journal of Science, 315: 363-411. [82] Swart P K,Murray S T,Staudigel P T,Hodell D A. 2019. Oxygen isotopic exchange between CO2 and phosphoric acid: implications for the measurement of clumped isotopes in carbonates. Geochemistry,Geophysics,Geosystems, 20(7): 3730-3750. [83] Teng F Z. 2017. Magnesium isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82(1): 219-287. [84] Veillard C M A,John C M,Krevor S,Najorka J. 2019. Rock-buffered recrystallization of Marion Plateau Dolomites at low temperature evidenced by clumped isotope thermometry and X-ray diffraction analysis. Geochimica et Cosmochimica Acta, 252: 190-212. [85] Warren J. 2000. Dolomite: occurrence,evolution and economically important associations. Earth-Science Reviews,52(1/3): 1-81. [86] Zhang Y G,Yang T,Hohl S V,Zhu B,He T C,Pan W Q,Chen Y Q,Yao X Z,Jiang S Y. 2020. Seawater carbon and strontium isotope variations through the late Ediacaran to late Cambrian in the Tarim Basin. Precambrian Research, 345: 105769.