Review of fluid flow types,chronological methods and geological applications in siliciclastic reservoirs
CUI Hang1,2, ZHU Shifa1,2, GAO Yishan1,2, DONG Yao1,2
1 National Key Laboratory of Petroleum Resources and Engineering,China University of Petroleum(Beijing),Beijing 102249,China; 2 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China
Abstract Fluid flow is an important medium controlling material evolution and energy exchange,and is closely related to rock composition,metal mineralization,and hydrocarbon reservoir accumulation in sedimentary basins,and therefore has high significance for exploration and practical application. By summarizing the previous research achievements and combining with the typical case studies,the fluid flow types,chronological methods and geological applications in siliciclastic reservoirs were reviewed. Finally,the existing problems and prospects of diagenetic fluid chronology were summarized. In general,fluid flow of clastic rocks can be classified into several main types: connate water,meteoric water,water from dehydration of minerals,fluid related to thermal evolution of source rocks,and deep hydrothermal fluid. The composition characteristics of different types of fluid flow and the main influencing diagenetic stages vary,but they are generally controlled by a variety of factors including tectonic activity,tectonothermal events,sedimentation,transport systems,and burial history. For diagenetic fluid chronology,the authors summarized the principles,main characteristics,sample requirements,applicable diagenetic fluid types about mineral observation method,fluid inclusion, calcite mineral dating(isotopic dilution method,ESR method,LA-ICP-MS method),authigenic illite40K/40Ar and 39Ar/40Ar dating,potassium feldspar overgrowth40K/40Ar and 39Ar/40Ar dating,organic-rich sediment Re-Os dating and other analytical techniques. Moreover,the geological application of diagenetic fluid chronology for determining the sedimentary age of strata,recovering the evolutionary history of diagenesis,determining the precise time of brittle tectonic activity,and determining the timing of hydrocarbon charging was summarized.
Fund:National Natural Science Foundation of China(Nos. 42272109, 41872102)
Corresponding Authors:
ZHU Shifa,born in 1982,is a Ph.D. supervisor and professor. He is mainly engaged in teaching and researches on reservoir geology and sedimentology. E-mail: zhushifa_zsf@163.com.
About author: CUI Hang,born in 1995,is a Ph.D. candidate. He is mainly engaged in reservoir geology and sedimentology. E-mail: 2018211056@student.cup.edu.cn.
Cite this article:
CUI Hang,ZHU Shifa,GAO Yishan et al. Review of fluid flow types,chronological methods and geological applications in siliciclastic reservoirs[J]. JOPC, 2023, 25(5): 1176-1198.
CUI Hang,ZHU Shifa,GAO Yishan et al. Review of fluid flow types,chronological methods and geological applications in siliciclastic reservoirs[J]. JOPC, 2023, 25(5): 1176-1198.
[1] 曹江骏,罗静兰,范彩伟,李珊珊,吴仕玖,符勇,史肖凡,代龙,侯静娴. 2022. 深部热流体活动对储层成岩作用及孔隙演化的影响: 以莺歌海盆地LDX区中新统黄流组为例. 地学前缘, 29(4): 412-429. [Cao J J,Luo J L,Fan C W,Li S S,Wu S J,Fu Y,Shi X F,Dai L,Hou J X.2022. Deep thermal fluid activity and its influence on the diagenesis and pore evolution of reservoirs: a case study from the Miocene Huangliu Formation Reservoir in the LDX area,Yinggehai Basin,northern South China Sea. Earth Science Frontiers, 29(4): 412-429] [2] 操应长,远光辉,王艳忠,昝念民,靳子濠,刘可禹,葸克来,魏亦晗,孙沛沛. 2022. 典型含油气盆地深层富长石碎屑岩储层长石溶蚀接力成孔认识及其油气地质意义. 中国科学: 地球科学, 52(9): 1694-1725. [Cao Y C,Yuan G H,Wang Y Z,Zan N M,Jin Z H,Liu K Y,Xi K L,Wei Y H,Sun P P.2022. Understanding of relay pore-forming of feldspar dissolution in deep feldspar-rich clastic reservoirs in typical oil-gas-bearing basins and its petroleum geological significance. Scientia Sinica(Terrae), 52(9): 1694-1725] [3] 陈刚,徐黎明,丁超,章辉若,李书恒,胡延旭,黄得顺,李楠,李岩. 2012. 用自生伊利石定年确定鄂尔多斯盆地东北部二叠系油气成藏期次. 石油与天然气地质, 33(5): 713-719,729. [Chen G,Xu L M,Ding C,Zhang H R,Li S H,Hu Y X,Huang D S,Li N,Li Y.2012. Authigenic illite dating for the timing of oil-gas accumulation of the Permian Reservoirs in northeastern Ordos Basin. Oil & Gas Geology, 33(5): 713-719,729] [4] 陈红汉. 2014. 单个油包裹体显微荧光特性与热成熟度评价. 石油学报, 35(3): 584-590. [Chen H H.2014. Microspectrofluorimetric characterization and thermal maturity assessment of individual oil inclusion. Acta Petrolei Sinica, 35(3): 584-590] [5] 程婷,Jianxin Zhao,Yuexing Feng,潘文庆,刘敦一. 2020. 低铀碳酸盐矿物的LA-MC-ICPMS微区原位U-Pb定年方法. 科学通报,65(Z1): 150-154. [Cheng T,Zhao J X,Feng Y X,Pan W Q,Liu D Y.2020. In-situ LA-MC-ICPMS U-Pb dating method for low-uranium carbonate minerals. Chinese Science Bulletin,65(Z1): 150-154] [6] 董宏坤,万世明,刘喜停. 2022. 海洋沉积物早期成岩作用研究进展. 沉积学报, 40(5): 1172-1187. [Dong H K,Wan S M,Liu X T.2022. Research progress on geochemical behavior of minerals and elements in early diagenesis of marine sediments. Acta Sedimentologica Sinica, 40(5): 1172-1187] [7] 高伊雪,邱昆峰,于皓丞,侯照亮,魏瑜吉. 2022. 碳酸盐矿物激光原位U-Pb定年基本原理、分析方法与地学应用. 岩石矿物学杂志, 41(4): 786-803. [Gao Y X,Qiu K F,Yu H C,Hou Z L,Wei Y J.2022. Principle,methods,and geological applications of carbonates LA-ICP-MS U-Pb geochronology. Acta Petrologica et Mineralogica, 41(4): 786-803] [8] 郭小文,陈家旭,袁圣强,何生,赵建新. 2020. 含油气盆地激光原位方解石U-Pb年龄对油气成藏年代的约束: 以渤海湾盆地东营凹陷为例. 石油学报, 41(3): 284-291. [Guo X W,Chen J X,Yuan S Q,He S,Zhao J X.2020. Constraint of in situ calcite U-Pb dating by laser ablation on geochronology of hydrocarbon accumulation in petroliferous basins: a case study of Dongying sag in the Bohai Bay Basin. Acta Petrolei Sinica, 41(3): 284-291] [9] 韩志宇,王非,师文贝. 2022. 沉积岩定年及应用: 问题与展望. 沉积学报, 40(2): 360-379. [Han Z Y,Wang F,Shi W B.2022. Dating and application for sedimentary rocks: problems and prospects. Acta Sedimentologica Sinica, 40(2): 360-379] [10] 侯中帅,陈世悦,刘惠民,杨怀宇,李晨,王媛媛. 2019. 东营凹陷热液流体活动及其油气地质意义. 中国矿业大学学报, 48(5): 1090-1101. [Hou Z S,Chen S Y,Liu H M,Yang H Y,Li C,Wang Y Y.2019. Hydrothermal fluid activity and its hydrocarbon geological significance in Dongying depression. Journal of China University of Mining & Technology, 48(5): 1090-1101] [11] 贾丽,鲍继飞,尹功明,刘静伟,李建平. 2006. 方解石脉ESR定年信号和测量条件的研究. 地震地质, 28(4): 668-674. [Jia L,Bao J F,Yin G M,Liu J W,Li J P.2006. Study on ESR signal centers and measurement conditions for dating of calcite. Seismology and Geology, 28(4): 668-674] [12] 金之钧,朱东亚,孟庆强,胡文瑄. 2013. 塔里木盆地热液流体活动及其对油气运移的影响. 岩石学报, 29(3): 1048-1058. [Jin Z J,Zhu D Y,Meng Q Q,Hu W X.2013. Hydrothermal activites and influences on migration of oil and gas in Tarim Basin. Acta Petrologica Sinica, 29(3): 1048-1058] [13] 李超,屈文俊,王登红,陈郑辉,杜安道. 2010. 富有机质地质样品Re-Os同位素体系研究进展. 岩石矿物学杂志, 29(4): 421-430. [Li C,Qu W J,Wang D H,Chen Z H,Du A D.2010. Advances in the study of the re-Os isotopic system of organic-rich samples. Acta Petrologica et Mineralogica, 29(4): 421-430] [14] 李献华,柳小明,刘勇胜,苏犁,孙卫东,Huang Huiqing,Yi Keewook.2015. LA-ICPMS锆石U-Pb定年的准确度: 多实验室对比分析. 中国科学: 地球科学, 45(9): 1294-1303. [Li X H,Liu X M,Liu Y S,Su L,Sun W D,Huang H Q,Keewook Y.2015. Accuracy of LA-ICPMS zircon U-Pb age determination: an inter-laboratory comparison. Scientia Sinica(Terrae), 45(9): 1294-1303] [15] 李忠,陈景山,关平. 2006. 含油气盆地成岩作用的科学问题及研究前沿. 岩石学报, 22(8): 2113-2122. [Li Z,Chen J S,Guan P.2006. Scientific problems and frontiers of sedimentary diagenesis research in oil-gas-bearing basins. Acta Petrologica Sinica, 22(8): 2113-2122] [16] 刘恩涛,Zhao Jian-xin,潘松圻,严德天,陆江,郝少斌,龚银,邹康. 2019. 盆地流体年代学研究新技术: 方解石激光原位U-Pb定年法. 地球科学, 44(3): 698-712. [Liu E T,Zhao J X,Pan S Q,Yan D T,Lu J,Hao S B,Gong Y,Zou K.2019. A new technology of basin fluid geochronology: In-situ U-Pb dating of calcite. Earth Science, 44(3): 698-712] [17] 刘全有,朱东亚,孟庆强,刘佳宜,吴小奇,周冰,Qi Fu,金之钧. 2019. 深部流体及有机—无机相互作用下油气形成的基本内涵. 中国科学: 地球科学, 49(3): 499-520. [Liu Q Y,Zhu D Y,Meng Q Q,Liu J Y,Wu X Q,Zhou B,Qi F,Jin Z J.2019. The scientific connotation of oil and gas formations under deep fluids and organic-inorganic interaction. Scientia Sinica(Terrae), 49(3): 499-520] [18] 卢焕章. 2014. 流体包裹体岩相学的一些问题探讨. 高校地质学报, 20(2): 177-184. [Lu H Z.2014. Fluid inclusion petrography: a discussion. Geological Journal of China Universities, 20(2): 177-184] [19] 罗静兰,何敏,庞雄,李弛,柳保军,雷川,马永坤,庞江. 2019. 珠江口盆地南部热演化事件与高地温梯度的成岩响应及其对油气勘探的启示. 石油学报,40(S1): 90-104. [Luo J L,He M,Pang X,Li C,Liu B J,Lei C,Ma Y K,Pang J.2019. Diagenetic response on thermal evolution events and high geothermal gradients in the southern Pear River Mouth Basin and its enlightenment to hydrocarbon exploration. Acta Petrolei Sinica,40(S1): 90-104] [20] 罗静兰,李弛,雷川,曹江骏,宋昆鹏. 2020. 碎屑岩储集层成岩作用研究进展与热点问题讨论. 古地理学报, 22(6): 1021-1040. [Luo J L,Li C,Lei C,Cao J J,Song K P.2020. Discussion on research advances and hot issues in diagenesis of clastic-rock reservoirs. Journal of Palaeogeography(Chinese Edition), 22(6): 1021-1040] [21] 马奔奔. 2016. 东营凹陷民丰北带沙四段近岸水下扇沉积区成岩流体及其成岩响应. 中国石油大学(华东)博士学位论文:3-14. [Ma B B.2016. Fluid flow and related diagenetic responses of sublacustrine fan: a case study from the Eocene Sha4 interval,northern Minfeng Sag,Dongying Depression. Doctoral dissertation of China University of Petroleum(East China):3-14] [22] 邱华宁,吴河勇,冯子辉,施和生,云建兵,王强,赵令浩. 2009. 油气成藏 40Ar-39Ar 定年难题与可行性分析. 地球化学, 38(4): 405-411. [Qiu H N,Wu H Y,Feng Z H,Shi H S,Yun J B,Wang Q,Zhao L H.2009. The puzzledom and feasibility in determining emplacement ages of oil/gas reservoirs by 40Ar-39Ar techniques. Geochimica, 38(4): 405-411] [23] 沈安江,胡安平,程婷,梁峰,潘文庆,俸月星,赵建新. 2019. 激光原位U-Pb同位素定年技术及其在碳酸盐岩成岩—孔隙演化中的应用. 石油勘探与开发, 46(6): 1062-1074. [Shen A J,Hu A P,Cheng T,Liang F,Pan W Q,Feng Y X,Zhao J X.2019. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs. Petroleum Exploration and Development, 46(6): 1062-1074] [24] 斯尚华,陈红汉,李纯泉,李培军,陈旭. 2017. 麦盖提斜坡玛南构造带鹰山组包裹体古流体压力特征. 高校地质学报, 23(4): 706-714. [Si S H,Chen H H,Li C Q,Li P J,Chen X.2017. Paleo-pressure of fluid inclusion in the Yingshan formation reservoirs of the Manan structural belt,Maigaiti slope. Geological Journal of China Universities, 23(4): 706-714] [25] 谭先锋,蒋威,吴康军,王浩,徐田堃,陈苏军,冉天. 2016. 陆相碎屑岩中钙质胶结物沉淀机制及油气储集意义: 来自济阳坳陷孔店组和川西须家河组的对比研究. 石油实验地质, 38(3): 293-302. [Tan X F,Jiang W,Wu K J,Wang H,Xu T K,Chen S J,Ran T.2016. Sedimentation mechanism and petroleum significance of calcareous cements in continental clastic rocks: comparison between the Kongdian Formation in the Jiyang Depression and the Xujiahe Formation in the western Sichuan Basin. Petroleum Geology & Experiment, 38(3): 293-302] [26] 王飞宇,冯伟平,关晶,CHAO Jun-chi.2018. 含油气盆地流体包裹体分析的关键问题和意义. 矿物岩石地球化学通报, 37(3): 441-450,561. [Wang F Y,Feng W P,Guan J,Chao J C.2018. Key questions of the fluid inclusion analysis in petroliferous basins and their significances. Bulletin of Mineralogy,Petrology and Geochemistry, 37(3): 441-450,561] [27] 王鹏昊,汤良杰,邱海峻,陈绪云,张宇航. 2013. 塔里木盆地皮羌断裂晚期活动ESR年代学证据及其地质意义. 石油与天然气地质, 34(1): 107-111. [Wang P H,Tang L J,Qiu H J,Chen X Y,Zhang Y H.2013. Chronology evidence of ESR dating for the late movements of the Piqiang fault in the Tarim Basin and its geological implication. Oil & Gas Geology, 34(1): 107-111] [28] 解习农,成建梅,孟元林. 2009. 沉积盆地流体活动及其成岩响应. 沉积学报, 27(5): 863-871. [Xie X N,Cheng J M,Meng Y L.2009. Basin fluid flow and associated diagenetic processes. Acta Sedimentologica Sinica, 27(5): 863-871] [29] 袁波,陈世悦,袁文芳,朱建伟. 2008. 济阳坳陷沙河街组锶硫同位素特征. 吉林大学学报(地球科学版), 38(4): 613-617. [Yuan B,Chen S Y,Yuan W F,Zhu J W.2008. Characteristics of strontium and sulfur isotopes in shahejie formation of Jiyang depression. Journal of Jilin University(Earth Science Edition), 38(4): 613-617] [30] 袁静,周涛,乔俊,杨贵丽,赵广昊. 2022. 深层砂砾岩中的深部热流体作用及其地质意义: 以渤海湾盆地东营凹陷民丰—盐家地区古近系沙河街组四段为例. 石油与天然气地质, 43(4): 929-942. [Yuan J,Zhou T,Qiao J,Yang G L,Zhao G H.2022. Deep hydrothermalism of deep coarse-grained siliciclastic rocks and its geological significance: a case study of the 4th member of the Paleogene Shahejie Formation in Minfeng-Yanjia area,Dongying Sag,Bohai Bay Basin. Oil & Gas Geology, 43(4): 929-942] [31] 岳鑫,刘溪溪,路亮,张晓冬,范增林,于小亮. 2019. 马海盆地深部孔隙卤水矿床水化学特征及成因. 沉积学报, 37(3): 532-540. [Yue X,Liu X X,Lu L,Zhang X D,Fan Z L,Yu X L.2019. Hydrochemical characteristics and origin of deep pore brine deposits in Mahai Basin. Acta Sedimentologica Sinica, 37(3): 532-540] [32] 赵子贤,施炜. 2019. 方解石LA-(MC-)ICP-MS U-Pb定年技术及其在脆性构造中的应用. 地球科学与环境学报, 41(5): 505-516. [Zhao Z X,Shi W.2019. LA-(MC-)ICP-MS U-Pb dating technique of calcite and its application in brittle structures. Journal of Earth Sciences and Environment, 41(5): 505-516] [33] 张有瑜,罗修泉. 2011. 油气储层自生伊利石分离提纯微孔滤膜真空抽滤装置与技术. 石油实验地质, 33(6): 671-676. [Zhang Y Y,Luo X Q.2011. A vacuum filtrating device and technique to separate authigenic illites from sandstone reservoirs with microporous membrane. Petroleum Geology & Experiment, 33(6): 671-676] [34] 张月霞,胡文瑄,姚素平,俞昊,康逊,吴海光,胡忠亚. 2018. 苏北盆地黄桥地区富CO2流体对二叠系龙潭组砂岩储层的改造与意义. 地质通报, 37(10): 1944-1955. [Zhang Y X,Hu W X,Yao S P,Yu H,Kang X,Wu H G,Hu Z Y.2018. The interaction of CO2-rich fluid with sandstone and its significance for sandstone reservoirs of Permian Longtan Formation in Huangqiao area,Subei Basin. Geological Bulletin of China, 37(10): 1944-1955] [35] 郑勇,李海兵,王世广,白明坤. 2019. 断层泥自生伊利石年龄分析及其在龙门山断裂带的应用. 地球学报, 40(1): 173-185. [Zheng Y,Li H B,Wang S G,Bai M K.2019. Authigenic illite age analysis for fault gouge and its application to the Longmen Shan fault belt. Acta Geoscientica Sinica, 40(1): 173-185] [36] 朱世发,贾业,万超凡,马立驰,崔殿,孙超,景安语. 2020. 济阳坳陷富林洼陷中生界复杂岩性风化壳储集层成岩作用. 古地理学报, 22(3): 555-569. [Zhu S F,Jia Y,Wan C F,Ma L C,Cui D,Sun C,Jing A Y.2020. Diagenetic of the Mesozoic complex weathering crust reservoir rock in Fulin subsag,Jiyang Depression. Journal of Palaeogeography(Chinese Edition), 22(3): 555-569] [37] Aleinikoff J N,Walter M,Kunk M J,Hearn P P Jr.1993. Do ages of authigenic K-feldspar date the formation of Mississippi Valley-type Pb-Zn deposits,central and southeastern United States?: Pb isotopic evidence. Geology, 21(1): 73-76. [38] Amthor J E,Okkerman J.1998. Influence of early diagenesis on reservoir quality of rotliegende sandstones,northern Netherlands. AAPG Bulletin, 82(12): 2246-2265. [39] Aplin A C,MacLeod G,Larter S R,Pedersen K S,Sorensen H,Booth T.1999. Combined use of Confocal Laser Scanning Microscopyand PVT simulation for estimating the composition and physical properties of petroleum in fluid inclusions. Marine and Petroleum Geology, 16(2): 97-110. [40] Arnold L J,Guilarte V,Duval M,Demuro M,Weij R,Reed E H.2022. ESR and OSL dating of fossil-bearing deposits from Naracoorte Cave Complex palaeontological sites,South Australia. Quaternary Geochronology, 69: 101270. [41] Bau M.1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho,Zr/Hf,and lanthanide tetrad effect. Contributions to Mineralogy and Petrology, 123: 323-333. [42] Bell D R,Rossman G R.1992. Water in earth's mantle: the role of nominally anhydrous minerals. Science, 255: 1391-1397. [43] Bjørlykke K.1994. Fluid-flow Processes and Diagenesis in Sedimentary Basins. Geological Society,London,Special Publications, 78: 127-140. [44] Bjørlykke K.2015. Petroleum Geoscience: From Sedimentary Environments to Rock Physics(Second Edition). Berlin: Springer,279-300. [45] Bodnar R J.1994. Philosophy of fluid inclusion analysis. In: Vivo B De,Frezzotti M L(eds). Fluid Inclusion in Mineral,Methods and Applications. Blacksburg: Virginia Tech,1-6. [46] Bruland K W.1983. Trace Elements in Sea-water. Chemical Oceanography. Amsterdam: Elsevier: 157-220. [47] Burruss R C.2003. Petroleum fluid inclusions,an introduction. In: Fluid Inclusions: Analysis and Interpretation. Mineralogical Association Canada,Short Course Series,32:159-174. [48] Cai C F,Li K K,Li H T,Zhang B S.2008. Evidence for cross formational hot brine flow from integrated87Sr/86Sr,REE and fluid inclusions of the Ordovician veins in Central Tarim,China. Applied Geochemistry, 23(8): 2226-2235. [49] Cui H,Zhu S F,Tan M X,Tong H.2022. Depositional and diagenetic processes in volcanic matrix-rich sandstones from the Shanxi and Shihezi formations,Ordos Basin,China: implication for volcano-sedimentary systems. Basin Research, 34: 1859-1893. [50] Chuhan F A,Bjørlykke K,Lowrey C.2000. The role of provenance in illitization of deeply buried reservoir sandstones from Haltenbanken and North Viking Graben,offshore Norway. Marine and Petroleum Geology, 17(6): 673-689. [51] Clauer N,Cocker J D,Chaudhuri S.1992. Isotopic dating of diagenetic illites in reservoir sandstones: influence of the investigator effect. Origin,Diagenesis,and Petrophysics of Clay Minerals in Sandstones. Tulsa: SEPM(Society for Sedimentary Geology): 5-12. [52] Clauer N, Środoń J,Francu J,Šucha V.1997. K-Ar dating of illite fundamental particles separated from illite-smectite. Clay Minerals, 32(2): 181-196. [53] Clauer N,Zwingmann H,Liewig N,Wendling R.2012. Comparative 40Ar/39Ar and K-Ar dating of illite-type clay minerals: a tentative explanation for age identities and differences. Earth-Science Reviews, 115(1-2): 76-96. [54] Cocherie A,Fanning C M,Jezequel P,Robert M.2009. LA-MC-ICPMS and SHRIMP U-Pb dating of complex zircons from Quaternary tephras from the French Massif Central: magma residence time and geochemical implications. Geochimica et Cosmochimica Acta, 73(4): 1095-1108. [55] Creaser R A,Sannigrahi P,Chacko T,Selby D.2002. Further evaluation of the Re-Os geochronometer in organic-rich sedimentary rocks: a test of hydrocarbon maturation effects in the Exshaw Formation,Western Canada Sedimentary Basin. Geochimica et Cosmochimica Acta, 66(9): 3441-3452. [56] Dalrymple G B,Lanphere M A.1969. Potassium-Argon Dating: Principles,Techniques and Applications to Geochronology. San Francisco: W. H. Freeman,258. [57] Dong H L,Hall C M,Halliday A N,Peacor D R,Merriman R J,Roberts B.1997. 40Ar/39Ar illite dating of Late Caledonian(Acadian)metamorphism and cooling of K-bentonites and slates from the Welsh Basin,U.K. Earth and Planetary Science Letters, 150: 337-351. [58] França A B,Araújo L M,Maynard J B,Potter P E.2003. Secondary porosity formed by deep meteoric leaching: Botucatu eolianite,southern South America. AAPG Bulletin, 87(7): 1073-1082. [59] Franks S G,Forester R W.1984. Relationships among secondary porosity,pore-fluid chemistry and carbon dioxide,Texas Gulf Coast. In: McDonald D A,Surdam R C(eds). Clastic Diagenesis. AAPG Memoir 37,63-80. [60] Gaupp R,Matter A,Platt J,Ramseyer K,Walzebuck J.1993. Diagenesis and fluid evolution of deeply buried Permian(Rotliegende)gas reservoirs,northwest Germany. AAPG Bulletin, 77(7): 1111-1128. [61] Goldstein R H.2003. Petrographic analysis of fluid inclusions. In: Samson I,Anderson A,Marshall D(eds). Fluid Inclusions: Analysis and Interpretation. Mineralogical Association of Canada,Short Course, 32: 9-53. [62] Haines S H,van der Pluijm B A.2008. Clay quantification and Ar-Ar dating of synthetic and natural gouge: application to the Miocene Sierra Mazatán detachment fault,Sonora,Mexico. Journal of Structural Geology, 30(4): 525-538. [63] Harlavan Y,Sandler A.2010. Steps toward dating early diagenetic K-feldspar by the 40Ar-39Ar method. Sedimentary Geology, 229(4): 254-267. [64] Hieftje G M,Rayson G D,Olesik J W.1985. A steady-state approach to excitation mechanisms in the ICP. Spectrochimica Acta Part B: Atomic Spectroscopy, 40(1-2): 167-176. [65] Hiess J,Condon D J,McLean N,Noble S R.2012. 238U/235U systematics in terrestrial uranium-bearing minerals. Science, 335: 1610-1614. [66] Israelson C,Halliday A N,Buchardt B.1996. U-Pb dating of calcite concretions from Cambrian black shales and the Phanerozoic time scale. Earth and Planetary Science Letters, 141(1): 153-159. [67] Jones B F,Deocampo D M.2003. Geochemistry of Saline Lakes. Treatise on Geochemistry. Amsterdam: Elsevier: 393-424. [68] Jowett E C,Cathles L M,Davis B W.1993. Predicting depths of gypsum dehydration in evaporitic sedimentary basins. AAPG Bulletin,77:402-413. [69] Kawamura K,Kaplan I R.1987. Dicarboxylic acids generated by thermal alteration of kerogen and humic acids. Geochimica et Cosmochimica Acta, 51(12): 3201-3207. [70] Kligfield R,Hunziker J,Dallmeyer R D,Schamel S.1986. Dating of deformation phases using K-Ar and 40Ar/39Ar techniques: results from the northern Apennines. Journal of Structural Geology, 8(7): 781-798. [71] Lanson B,Beaufort D,Berger G,Baradat J,Lacharpagne J C.1998. Late-stage diagenesis of illitic clay minerals as seen by decomposition of X-Ray diffraction patterns: contrasted behaviors of sedimentary basins with different burial histories. Clay and Clay Minerals, 46: 69-78. [72] Li Q,Parrish R R,Horstwood M S A,McArthur J M.2014. U-Pb dating of cements in Mesozoic ammonites. Chemical Geology, 376: 76-83. [73] Liu J Z,Hay R L,Deino A,Kyser T K.2003. Age and origin of authigenic K-feldspar in uppermost Precambrian rocks in the North American Midcontinent. Geological Society of America Bulletin, 115(4): 422-433. [74] Machel H G,Lonnee J.2002. Hydrothermal dolomite: a product of poor definition and imagination. Sedimentary Geology, 152(3-4): 163-171. [75] Mark D F,Kelley S P,Lee M R,Parnell J,Sherlock S C,Brown D J.2008. Ar-Ar dating of authigenic K-feldspar: quantitative modelling of radiogenic argon-loss through subgrain boundary networks. Geochimica et Cosmochimica Acta, 72(11): 2695-2710. [76] Meunier A,Velde B,Zalba P.2004. Illite K-Ar dating and crystal growth processes in diagenetic environments: a critical review. Terra Nova, 16(5): 296-304. [77] Merrihue C,Turner G.1966. Potassium-argon dating by activation with fast neutrons. Journal of Geophysical Research, 71(11): 2852-2857. [78] Moorbath S,Taylor P N,Orpen J L,Treloar P,Wilson J F.1987. First direct radiometric dating of Archaean stromatolitic limestone. Nature, 326: 865-867. [79] Morad S,Ketzer J M,De Ros L F.2000. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basins. Sedimentology,47(S1): 95-120. [80] Murray N A,McManus J,Palmer M R,Haley B,Manners H.2018. Diagenesis in tephra-rich sediments from the Lesser Antilles Volcanic Arc: pore fluid constraints. Geochimica et Cosmochimica Acta, 228: 119-135. [81] Nuriel P,Weinberger R,Kylander-Clark A R C,Hacker B R,Craddock J P.2017. The onset of the Dead Sea transform based on calcite age-strain analyses. Geology, 45(7): 587-590. [82] Ostroff A G.1964. Conversion of gypsum to anhydrite in aqueous salt solutions. Geochimica et Cosmochimica Acta, 28(9): 1363-1372. [83] Qiu D F,Liu Q Y,Yun J B,Jin Z J,Zhu D Y,Li T Y,Sun D S.2018. Electron spin resonance(ESR)dating of pre-Quaternary faults in the Sichuan Basin,SW China. Journal of Asian Earth Sciences, 163: 142-151. [84] Ravizza G,Turekian K K.1989. Application of the 187Re-187Os system to black shale geochronometry. Geochimica et Cosmochimica Acta, 53(12): 3257-3262. [85] Ripley E M,Park Y R,Lambert D D,Frick L R.2001. Re-Os isotopic composition and PGE contents of Proterozoic carbonaceous argillites,Virginia Formation,Northeastern Minnesota. Organic Geochemistry, 32(6): 857-866. [86] Roberts N M W,Walker R J.2016. U-Pb geochronology of calcite-mineralized faults: absolute timing of rift-related fault events on the northeast Atlantic margin. Geology, 44(7): 531-534. [87] Roberts N M W,Rasbury E T,Parrish R R,Smith C J,Horstwood M S A,Condon D J.2017. A calcite reference material for LA-ICP-MS U-Pb geochronology. Geochemistry,Geophysics,Geosystems, 18(7): 2807-2814. [88] Roedder E.1979. Fluid inclusion evidence on the environments of sedimentary diagenesis:a review. Aspects of Diagenesis. Tulsa: SEPM(Society for Sedimentary Geology): 89-107. [89] Schenk C J,Richardson R W.1985. Recognition of interstitial anhydrite dissolution: a cause of secondary porosity,San Andres limestone,New Mexico,and Upper Minnelusa Formation,Wyoming. AAPG Bulletin, 69: 1064-1076. [90] Schwarcz H P,Rink W J.2001. Dating methods for sediments of caves and rockshelters with examples from the Mediterranean Region. Geoarchaeology, 16(4): 355-371. [91] Scotchman I C.1989. Clay diagenesis and oil migration in Brent group sandstones of NW hutton field,UK North Sea. Clay Minerals, 24(2): 339-374. [92] Sherlock S C,Lucks T,Kelley S P,Barnicoat A.2005. A high resolution record of multiple diagenetic events: ultraviolet laser microprobe Ar/Ar analysis of zoned K-feldspar overgrowths. Earth and Planetary Science Letters, 238(3-4): 329-341. [93] Simonetti A,Heaman L M,Chacko T,Banerjee N R.2006. In situ petrographic thin section U-Pb dating of zircon,monazite,and titanite using laser ablation-MC-ICP-MS. International Journal of Mass Spectrometry, 253(1-2): 87-97. [94] Smith P E,Farquhar R M,Hancock R G.1991. Direct radiometric age determination of carbonate diagenesis using U-Pb in secondary calcite. Earth and Planetary Science Letters, 105(4): 474-491. [95] Smoliar M I,Walker R J,Morgan J W.1996. Re-Os ages of group IIA,ⅢA,IVA,and IVB iron Meteorites. Science, 271: 1099-1102. [96] Surdam R C,Crossey L J,Hagen E S,Heasler H P.1989. Organic-inorganic interactions and sandstone diagenesis. AAPG Bulletin, 73(1): 1-23. [97] van der Pluijm B A,Hall C M,Vrolijk P J,Pevear D R,Covey M C.2001. The dating of shallow faults in the Earth's crust. Nature, 412: 172-175. [98] Wang J,Cao Y C,Liu K Y,Liu J,Xue X J,Xu Q S.2016. Pore fluid evolution,distribution and water-rock interactions of carbonate cements in red-bed sandstone reservoirs in the Dongying Depression,China. Marine and Petroleum Geology, 72: 279-294. [99] Wang Y Z,Fu Y H,Cao Y C,Wang S P,Song M S,Wang Y S,Wang X J,Yuan G H,Wang J.2020. Sources of authigenic quartz in the Permian tight sandstones close to Gaoqing Fault,Dongying Sag,Bohai Bay Basin,China. Marine and Petroleum Geology, 113: 104109. [100] Wang Z S,Rasbury E T,Hanson G N,Meyers W J.1998. Using the U-Pb system of calcretes to date the time of sedimentation of clastic sedimentary rocks. Geochimica et Cosmochimica Acta, 62(16): 2823-2835. [101] Winter B L,Johnson C M,Simo J A,Valley J W.1995. Paleozoic fluid history of the Michigan Basin: evidence from dolomite geochemistry in the Middle Ordovician St. peter sandstone. Journal of Sedimentary Research,65A: 306-320. [102] Woodhead J,Petrus J.2019. Exploring the advantages and limitations of in situ U-Pb carbonate geochronology using speleothems. Geochronology, 1(1): 69-84. [103] Woodhead J,Hellstrom J,Maas R,Drysdale R,Zanchetta G,Devine P,Taylor E.2006. U-Pb geochronology of speleothems by MC-ICPMS. Quaternary Geochronology, 1(3): 208-221. [104] Worden R H,Morad S.2009. Clay minerals in sandstones: controls on formation,distribution and evolution. In: Clay Mineral Cements in Sandstones. Oxford,UK: Blackwell Publishing Ltd,1-41. [105] Worden R H,Coleman M L,Matray J M.1999. Basin scale evolution of formation waters: a diagenetic and formation water study of the Triassic Chaunoy Formation,Paris Basin. Geochimica et Cosmochimica Acta, 63(17): 2513-2528. [106] Yang P,Wu G H,Nuriel P,Nguyen A D,Chen Y Q,Yang S,Feng Y X,Ren Z L,Zhao J X.2021. In situ LA-ICPMS U-Pb dating and geochemical characterization of fault-zone calcite in the central Tarim Basin,northwest China: implications for fluid circulation and fault reactivation. Chemical Geology, 568: 120125. [107] Yokoyama T,Kimura J I,Mitsuguchi T,Danhara T,Hirata T,Sakata S,Iwano H,Maruyama S,Chang Q,Miyazaki T,Murakami H,Saito-Kokubu Y.2018. U-Pb dating of calcite using LA-ICP-MS: instrumental setup for non-matrix-matched age dating and determination of analytical areas using elemental imaging. Geochemical Journal, 52(6): 531-540. [108] Yuan G H,Cao Y C,Jia Z Z,Gluyas J,Yang T,Wang Y Z,Xi K L.2015. Selective dissolution of feldspars in the presence of carbonates: the way to generate secondary pores in buried sandstones by organic CO2. Marine and Petroleum Geology, 60: 105-119. [109] Yuan G H,Cao Y C,Zhang Y C,Gluyas J.2017. Diagenesis and reservoir quality of sandstones with ancient “deep”incursion of meteoric freshwater: an example in the Nanpu Sag,Bohai Bay Basin,East China. Marine and Petroleum Geology, 82: 444-464. [110] Zhu S F,Taylor K,Chen J H,Zhu X M,Sun S Y,Jia Y.2019. Controls on carbonate cementation in early syn-rift terrestrial siliciclastics: the Lower Cretaceous of the Bayindulan Sag in Er'lian Basin,China. Marine and Petroleum Geology, 105: 64-80. [111] Zhu S F,Cui H,Jia Y,Zhu X M,Tong H,Ma L C.2020a. Occurrence,composition,and origin of analcime in sedimentary rocks of non-marine petroliferous basins in China. Marine and Petroleum Geology,113(C): 104164. [112] Zhu S F,Zhu X M,Jia Y,Cui H,Wang W Y.2020b. Diagenetic alteration,pore-throat network,and reservoir quality of tight gas sandstone reservoirs: a case study of the upper Paleozoic sequence in the northern Tianhuan depression in the Ordos Basin,China. AAPG Bulletin, 104(11): 2297-2324.