的存在和硫化物对镁水合物脱水的影响以及微生物白云石沉淀的环境因子。对微生物成因的原生白云石模式的深入认识,将为湖相白云石成因研究提供新的理论基础和研究思路。"/>
O42-,the impact of sulfide on dehydration of magnesium hydrate and the environmental factors on the precipitation of microbial dolomite. The deep understanding of microbiogenic of primary dolomite model will provide a new theoretical basis and a new insight for lacustrine dolomite."/>
Microbial mechanism of lacustrine primary dolomite
Microbial mechanism of lacustrine primary dolomite
Jiang Qicai1, Liu Bo1, Guo Rongtao1, Gao Xiaoqiao2, Li Yang2, Zhang Shanming1
1 School of Earth and Space Sciences/Oil & Gas Institute,Peking University,Beijing 100871.; 2 School of Earth Sciences and Resources,China University of Geosciences(Beijing),Beijing 100083;
Abstract Recently,with the in-depth research on the microbial dolomite mode,a new perspective on Dolomite Problem has been provided. Previous researches on the origin of microbial dolomite mainly focused on the microbial processes in unconsolidated sediments,which equals to organic penecontemporaneous dolomitization. It differs from bacteria ̄induced organic primary dolomite in laboratory in mechanism. This study introduces the formation mechanism of microbial dolomite into lacustrine primary dolomite,concluding that it would also precipitate primary dolomite in the interface between lake water and sediment,organic primary dolomite. There is a distinction between lake water and sediment in microenvironment of interface,which can be generally divided into two subenvironments: Aerobic and anaerobic,living with different microflora. According to the subenvironments' characteristics of different lake types,different microorganism species and their various role in the formation of dolomite,three microbial dolomite modes can be distinguished,which are the aerobic oxidation mode,the sulphate reduction mode and the methanogenesis mode. Different modes of the microbial dolomite correspond to different lake environments: The aerobic oxidation mode mainly develops in aerobic,high Mg/Ca,salt water lake/saline. The sulphate reduction mode mostly develops in anaerobic,high Mg/Ca,salt water lake/saline. The methanogenesis mode primarily develops in anaerobic,low Mg/Ca,freshwater lake/salt water lake. Moreover,some still-controversial issues on the process of dolomite precipitation will be discussed,such as the changing of pH,the effect of SO42-,the impact of sulfide on dehydration of magnesium hydrate and the environmental factors on the precipitation of microbial dolomite. The deep understanding of microbiogenic of primary dolomite model will provide a new theoretical basis and a new insight for lacustrine dolomite.
Received: 17 November 2016
Published: 01 April 2017
About author: About the first author Jiang Qicai,born in 1992,is a Ph.D. candidate of Peking University. He is engaged in sedimentology. E-mail: jiangqc@pku.edu.cn.About the corresponding author Liu Bo,born in 1965,is a professor and Ph.D. supervisor in Peking University. He is engaged in sedimentology and structural geology. E-mail: bobliu@pku.edu.cn.
Cite this article:
Jiang Qicai,Liu Bo,Guo Rongtao et al. Microbial mechanism of lacustrine primary dolomite[J]. JOPC, 2017, 19(2): 257-269.
Jiang Qicai,Liu Bo,Guo Rongtao et al. Microbial mechanism of lacustrine primary dolomite[J]. JOPC, 2017, 19(2): 257-269.
1 冯继光,胡宝群. 2008. 微生物在酸性矿山废水形成与治理中的作用. 科技情报开发与经济,18(15): 138-140. [Feng J G,Hu B Q. 2008. The functions of microorganism in the formation and treatment of acidic mine drainage. Sci-tech Information Development & Economy,18(15): 138-140] 2 胡文瑄,朱井泉,王小林,由雪莲,何凯. 2014. 塔里木盆地柯坪地区寒武系微生物白云岩特征、成因及意义. 石油与天然气地质,35(6): 860-869. [Hu W X,Zhu J Q,Wang X L,You X L,He K. 2014. Characteristics,origin and geological implications of the Cambrian microbial dolomite in Keping area,Tarim Basin. Oil & Gas Geology,35(6): 860-869] 3 黄成刚,袁剑英,吴梁宇,张小军,吴丽荣,潘星. 2016. 湖相白云岩成因模式及研究方法探讨. 岩性油气藏,28(2): 7-15. [Huang C G,Yuan J Y,Wu L Y,Zhang X J,Wu L R,Pan X. 2016. Origin and research methods of lacustrine dolomite. Lithologic Reservoirs,28(2): 7-15] 4 黄杏珍,邵宏舜,闫存凤,妥进才,何祖荣,张新社,王寿庆,李玉兰. 2001. 泌阳凹陷下第三系湖相白云岩形成条件. 沉积学报,19(2): 207-213. [Huang X Z,Shao H S,Yan C F,Tuo J C,He Z R,Zhang X S,Wang S Q,Li Y L. 2001. Sedimentary condition of lacustrine dolomite in the Lower Tertiary Biyang Depression. Acta Sedimentologica Sinica,19(2): 207-213] 5 李波,颜佳新,刘喜停,薛武强. 2010. 白云岩有机成因模式: 机制、进展与意义. 古地理学报,12(6): 699-710. [Li B,Yan J X,Liu X T,Xue W Q. 2010. The organogenic dolomite model mechanism,progress and significance. Journal of Palaeogeography(Chinese Edition),12(6): 699-710] 6 李红,柳益群. 2013. “白云石(岩)问题”与湖相白云岩研究. 沉积学报,31(2): 302-314. [Li H,Liu Y Q. 2013. “Dolomite problem”and research of ancient lacustrine dolostones. Acta Sedimentologica Sinica,31(2): 302-314] 7 李红,柳益群,梁浩,周小虎,焦鑫,刘洪福,杨锐,雷川. 2012. 新疆三塘湖盆地中二叠统芦草沟组湖相白云岩成因. 古地理学报,14(1): 45-58. [Li H,Liu Y Q,Liang H,Zhou X H,Jiao X,Liu H F,Yang R,Lei C. 2012. Origin of lacustrine dolostones of the Middle Permian Lucaogou Formation in Santanghu Basin of Xinjiang. Journal of Palaeogeography(Chinese Edition),14(1): 45-58] 8 宋泉颖,徐俊,张宇. 2014. 球形赖氨酸芽孢杆菌( Lysinibacillus sphaericus )和嗜冷芽孢八叠球菌( Sporosarcina psychrophila )介导形成白云石晶体. 微生物学通报,41(10): 2155-2165. [Song Q Y,Xu J,Zhang Y. 2014. Dolomite precipitation mediated by Lysinibacillus sphaericus and Sporosarcina psychrophila. Microbiology China,41(10): 2155-2165] 9 夏文杰,李秀华. 1986. 青海小柴旦盐湖湖滩岩中原生白云石的发现及其意义. 沉积学报,4(2): 19-26. [Xia W J,Li X H. 1986. The discovery of primary dolomite from beach rock in the Xiaochaidan salt lake of Qinghai and its significance. Acta Sedimentologica Sinica,4(2): 19-26] 10 杨渐,蒋宏忱,孙永娟,吴耿,侯卫国,董海良,赖忠平. 2013. 青藏高原湖泊沉积物硫酸盐还原菌种群分布. 盐湖研究,21(1): 7-13. [Yang J,Jiang H C,Sun Y J,Wu G,Hou W G,Dong H L,Lai Z P. 2013. Abundance and diversity of sulfate-reducing bacteria in Qinghai-Tibetan lakes. Journal of Salt Lake Research,21(1): 7-13] 11 于炳松,董海良,蒋宏忱,李善营,刘英超. 2007. 青海湖底沉积物中球状白云石集合体的发现及其地质意义. 现代地质,21(1): 66-70. [Yu B S,Dong H L,Jiang H C,Li S Y,Liu Y C. 2007. Discovery of spheric dolomite aggregations in sediments from the bottom of Qinghai lake and its significance for dolomite problem. Geoscience,21(1): 66-70] 12 曾志华,杨民和,佘晨兴,仝川. 2014. 闽江河口区淡水和半咸水潮汐沼泽湿地土壤产甲烷菌多样性. 生态学报,34(10): 2674-2681. [Zeng Z H,Yang M H,She C X,Tong C. 2014. Diversity of methanogen communities in tidal fresh water and brackish marsh soil in the Min River estuary. Acta Ecologica Sinica,34(10): 2674-2681] 13 Baldwin D S,Rees G N,Mitchell A M,Watson G,Williams J. 2006. The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland. Wetlands,26(2): 455-464. 14 Belyakova E,Rozanova E,Borzenkov I,Tourova T,Pusheva M,Lysenko A,Kolganova T. 2006. The new facultatively chemolithoautotrophic,moderately halophilic,sulfate-reducing bacterium Desulfovermiculus halophilus gen. nov.,sp. nov.,isolated from an oil field. Microbiology,75(2): 161-171. 15 Berner R A. 1980. Early Diagenesis: A Theoretical Approach. New Jersey: Princeton University Press,241. 16 Boetius A,Ravenschlag K,Schubert C J,Rickert D,Widdel F,Gieseke A,Amann R,Jørgensen B B,Witte U,Pfannkuche O. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature,407(6804): 623-626. 17 Bontognali T R,Vasconcelos C,Warthmann R J,Bernasconi S M,Dupraz C,Strohmenger C J,McKenzie J A. 2010. Dolomite formation within microbial mats in the coastal sabkha of Abu Dhabi(United Arab Emirates). Sedimentology,57(3): 824-844. 18 Bontognali T R,Vasconcelos C,Warthmann R J,Lundberg R,McKenzie J A. 2012. Dolomite: Mediating bacterium isolated from the sabkha of Abu Dhabi(UAE). Terra Nova,24(3): 248-254. 19 Bowen G J,Daniels A L,Bowen B B. 2008. Paleoenvironmental isotope geochemistry and paragenesis of lacustrine and palustrine carbonates,Flagstaff Formation,Central Utah,USA. Journal of Sedimentary Research,78(3): 162-174. 20 Bustillo M,Arribas M,Bustillo M. 2002. Dolomitization and silicification in low-energy lacustrine carbonates(Paleogene,Madrid Basin,Spain). Sedimentary Geology,151(1): 107-126. 21 Compton J S. 1988. Degree of supersaturation and precipitation of organogenic dolomite. Geology,16(4): 318-321. 22 Corzo A,Luzon A,Mayayo M,Van Bergeijk S,Mata P, de Lomas J G. 2005. Carbonate mineralogy along a biogeochemical gradient in recent lacustrine sediments of Gallocanta Lake(Spain). Geomicrobiology Journal,22(6): 283-298. 23 de Lomas J G,Corzo A,Garcia C,van Bergeijk S. 2005. Microbenthos in a hypersaline tidal lagoon: Factors affecting microhabital,community structure and mass exchange at the sediment-water interface. Aquatic Microbial Ecology,38(1): 53-69. 24 Deelman J C. 2003. Low-temperature Formation of Dolomite and Magnesite. Eindhoven: Compact Disc Publications,515. 25 Deng S C,Dong H L,Lü G,Jiang H C,Yu B S,Bishop M E. 2010. Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: Results from Qinghai Lake,Tibetan Plateau,NW China. Chemical Geology,278(3): 151-159. 26 Fenchel T,Finlay B J. 1995. Ecology and evolution in anoxic worlds. New York: Oxford University Press,276. 27 García Del Cura M,Calvo J P,Ordonez S,Jones B F,Cañaveras J C. 2001. Petrographic and geochemical evidence for the formation of primary,bacterially induced lacustrine dolomite: La Roda‘white earth’(Pliocene,central Spain). Sedimentology,48(4): 897-915. 28 Garcés B L V,Kelts K,Ito E. 1995. Oxygen and carbon isotope trends and sedimentological evolution of a meromictic and saline lacustrine system: The Holocene Medicine Lake basin,North American Great Plains,USA. Palaeogeography,Palaeoclimatology,Palaeoecology,117(3): 253-278. 29 Garrels R,Thompson M. 1962. A chemical model for sea water at 25 degrees C and one atmosphere total pressure. American Journal of Science,260(1): 57-66. 30 Gierlowski-Kordesch E H. 2010. Lacustrine carbonates. Developments in Sedimentology,61: 1-101. 31 Godsmith J R,Graf D L. 1958. Relations between lattice constants and compositions of the Ca-Mg carbonates. The American Mineralogist,43: 84-101. 32 Gregg J M,Bish D L,Kaczmarek S E,Machel H G. 2015. Mineralogy,nucleation and growth of dolomite in the laboratory and sedimentary environment: A review. Sedimentology,62: 1749-1769. 33 Gunatilaka A,Saleh A,Al-Temeemi A,Nassar N. 1984. Occurrence of subtidal dolomite in a hypersaline lagoon,Kuwait. Nature,311: 450-452. 34 Hardie L A. 1987. Dolomitization: A critical view of some current views. Journal of Sedimentary Research,57(1): 166-183. 35 Hinrichs K-U,Hayes J M,Sylva S P,Brewer P G,DeLong E F. 1999. Methane-consuming archaebacteria in marine sediments. Nature,398(6730): 802-805. 36 Kenward P,Goldstein R,Gonzalez L,Roberts J. 2009. Precipitation of low-temperature dolomite from an anaerobic microbial consortium: The role of methanogenic Archaea. Geobiology,7(5): 556-565. 37 Kjeldsen K U,Loy A,Jakobsen T F,Thomsen T R,Wagner M,Ingvorsen K. 2007. Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment,Great Salt Lake(Utah). FEMS Microbiology Ecology,60(2): 287-298. 38 Krause S,Liebetrau V,Gorb S,Sánchez-Román M,McKenzie J A,Treude T. 2012. Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: New insight into an old enigma. Geology,40(7): 587-590. 39 Krauskopf K B. 2010. Introduction to geochemistry(2nd Edition). New York: McGraw-Hill,647. 40 Land L S. 1985. The origin of massive dolomite. Journal of Geological Education,33(2): 112-125. 41 Land L S. 1998. Failure to precipitate dolomite at 25 ℃ from dilute solution despite 1000-fold oversaturation after 32 years. Aquatic Geochemistry,4(3): 361-368. 42 Last W M. 1990. Lacustrine dolomite: An overview of modern,Holocene,and Pleistocene occurrences. Earth-Science Reviews,27(3): 221-263. 43 Last W M,Ginn F M. 2005. Saline systems of the Great Plains of western Canada: An overview of the limnogeology and paleolimnology. Saline Systems,1(1): 10. 44 Lindtke J,Ziegenbalg S,Brunner B,Rouchy J,Pierre C,Peckmann J. 2011. Authigenesis of native sulphur and dolomite in a lacustrine evaporitic setting(Hellín basin,Late Miocene,SE Spain). Geological Magazine,148(4): 655-669. 45 Lippmann F. 2012. Sedimentary Carbonate Minerals. Berlin: Springer Science and Business Media,6. 46 Loeffler H. 2004. The origin of lake basins. In: O'Sullivan P E,Reynolds C S(eds). The Lakes Handbook,Volume 1: Limnology and Limnetic Ecology. Britain: Blackwell Science Ltd,8-60. 47 Madigan M T,Martinko J M,Dunlap P V,Clark D P. 2009. Brock Biology of Microorganisms(12th Edition). San Francisco: Pearson Benjamin Cummings,596. 48 Mazzullo S J. 2000. Organogenic dolomitization in peritidal to deep-sea sediments. Journal of Sedimentary Research,70(1): 10-23. 49 Meister P,Reyes C,Beaumont W,Rincon M,Collins L,Berelson W,Stott L,Corsetti F,Nealson K H. 2011. Calcium and magnesium-limited dolomite precipitation at Deep Springs Lake,California. Sedimentology,58(7): 1810-1830. 50 Moore T S,Murray R,Kurtz A,Schrag D. 2004. Anaerobic methane oxidation and the formation of dolomite. Earth and Planetary Science Letters,229(1): 141-154. 51 Morad S. 2009. Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution. Oxford: Blackwell Publishing Ltd,1-26. 52 Moreira N F,Walter L M,Vasconcelos C,McKenzie J A,McCall P J. 2004. Role of sulfide oxidation in dolomitization: Sediment and pore-water geochemistry of a modern hypersaline lagoon system. Geology,32(8): 701-704. 53 Morrow D. 1982. Diagenesis 1. Dolomite-Part 1: The chemistry of dolomitization and dolomite precipitation. Geoscience Canada,9(1): 5-13. 54 Morse J W. 2003. Formation and diagenesis of carbonate sediments. Treatise on Geochemistry,7: 67-85. 55 Mucci A,Sundby B,Gehlen M,Arakaki T,Zhong S,Silverberg N. 2000. The fate of carbon in continental shelf sediments of eastern Canada: A case study. Deep Sea Research Part II Topical Studies in Oceanography,47(3-4): 733-760. 56 Nadson G A. 1928. Beitrag zur Kenntnis der bakteriogenen Kalkablagerungen. Archiv fuer Hydrobiologie,19: 154-164. 57 Neher J,Rohrer E. 1959. Bakterien in tieferliegenden Gesteinslagen. Eclogae Geologicae Helvetiae,52(2): 619-625. 58 Pytkowicz R,Hawley J. 1974. Bicarbonate and carbonate ion-pairs and a model of seawater at 25,℃. Limnol. Oceanogr.,19(2): 223-234. 59 Rinzema A,Van Lier J,Lettinga G. 1988. Sodium inhibition of acetoclastic methanogens in granular sludge from a UASB reactor. Enzyme and Microbial Technology,10(1): 24-32. 60 Roberts J A,Bennett P C,González L A,Macpherson G,Milliken K L. 2004. Microbial precipitation of dolomite in methanogenic groundwater. Geology,32(4): 277-280. 61 Sánchez-Román M,McKenzie J A,Wagener A d L R,Rivadeneyra M A,Vasconcelos C. 2009a. Presence of sulfate does not inhibit low-temperature dolomite precipitation. Earth and Planetary Science Letters,285(1): 131-139. 62 Sánchez-Román M,Vasconcelos C,Schmid T,Dittrich M,McKenzie J A,Zenobi R,Rivadeneyra M A. 2008. Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record. Geology,36(11): 879-882. 63 Sánchez-Román M,Vasconcelos C,Warthmann R,Rivadeneyra M,McKenzie J A. 2009b. Microbial dolomite precipitation under aerobic conditions: Results from Brejo do Espinho Lagoon(Brazil)and culture experiments. Perspectives in Carbonate Geology: A Tribute to the Career of Robert Nathan Ginsburg,41: 167-178. 64 Sanz-Montero M E,Rodríguez-Aranda J P,García del Cura M A. 2009. Bioinduced precipitation of barite and celestite in dolomite microbialites: Examples from Miocene lacustrine sequences in the Madrid and Duero Basins,Spain. Sedimentary Geology,222(1): 138-148. 65 Slaughter M,Hill R J. 1991. The influence of organic matter in organogenic dolomitization: Perspective. Journal of Sedimentary Research,61(2): 296-303. 66 Talbot M,Kelts K. 1986. Primary and diagenetic carbonates in the anoxic sediments of Lake Bosumtwi,Ghana. Geology,14(11): 912-916. 67 Thauer R K. 1998. Biochemistry of methanogenesis: A tribute to Marjory Stephenson: 1998,Marjory Stephenson Prize Lecture. Microbiology,144(9): 2377-2406. 68 Tucker M E,Wright V P. 1990. Carbonate Sedimentology. Oxford: Blackwell Scientific,370-372. 69 Vallero M,Pol L H,Lettinga G,Lens P. 2003. Effect of NaCl on thermophilic(55 degrees C)methanol degradation in sulfate reducing granular sludge reactors. Water Research,37(10): 2269-2280. 70 van Lith Y,Warthmann R,Vasconcelos C,McKenzie J A. 2003a. Microbial fossilization in carbonate sediments: A result of the bacterial surface involvement in dolomite precipitation. Sedimentology,50(2): 237-245. 71 van Lith Y,Warthmann R,Vasconcelos C,Mckenzie J A. 2003b. Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation. Geobiology,1(1): 71-79. 72 Vasconcelos C,McKenzie J A. 1997. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions(Lagoa Vermelha,Rio de Janeiro,Brazil). Journal of Sedimentary Research,67(3): 378-390. 73 Vasconcelos C,McKenzie J A,Warthmann R,Bernasconi S M. 2005. Calibration of the δ 18 O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology,33(4): 317-320. 74 Visscher P T,Reid R P,Bebout B M,Hoeft S E,Macintyre I G,Thompson J A. 1998. Formation of lithified micritic laminae in modern marine stromatolites(Bahamas): The role of sulfur cycling. American Mineralogist,83(11): 1482-1493. 75 Wacey D,Wright D T,Boyce A J. 2007. A stable isotope study of microbial dolomite formation in the Coorong Region,South Australia. Chemical Geology,244(1): 155-174. 76 Warren J. 2000. Dolomite: Occurrence,evolution and economically important associations. Earth-Science Reviews,52(1): 1-81. 77 Warthmann R,van Lith Y,Vasconcelos C,McKenzie J A,Karpoff A M. 2000. Bacterially induced dolomite precipitation in anoxic culture experiments. Geology,28(12): 1091-1094. 78 Warthmann R,Vasconcelos C,Sass H,McKenzie J A. 2005. Desulfovibrio brasiliensis sp. nov.,a moderate halophilic sulfate-reducing bacterium from Lagoa Vermelha(Brazil)mediating dolomite formation. Extremophiles,9(3): 255-261. 79 Wetzel R G. 2001. Limnology: Lake and river ecosystems. Eos Transactions American Geophysical Union,21(2): 1-9. 80 Whiticar M J. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology,161(1): 291-314. 81 Wright D T. 1999. The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region,South Australia. Sedimentary Geology,126(1): 147-157. 82 Wright D T,Wacey D. 2005. Precipitation of dolomite using sulphate-reducing bacteria from the Coorong Region,South Australia: Significance and implications. Sedimentology,52(5): 987-1008. 83 Yang Y,Sahai N,Romanek C S,Chakraborty S. 2012. A computational study of Mg 2+ dehydration in aqueous solution in the presence of HS - and other monovalent anions: Insights to dolomite formation. Geochimica et Cosmochimica Acta,88: 77-87. 84 Zhang F,Xu H,Konishi H,Kemp J M,Roden E E,Shen Z. 2012a. Dissolved sulfide-catalyzed precipitation of disordered dolomite: Implications for the formation mechanism of sedimentary dolomite. Geochimica et Cosmochimica Acta,97: 148-165. 85 Zhang F,Xu H,Konishi H,Shelobolina E S,Roden E E. 2012b. Polysaccharide-catalyzed nucleation and growth of disordered dolomite: A potential precursor of sedimentary dolomite. American Mineralogist,97: 556-567.