Three-dimensional reconstruction and their significance of bioturbation-type reservoirs of the Ordovician in Tahe Oilfield
Niu Yong-Bin1,2, Cui Sheng-Li1, Hu Ya-Zhou1, Zhong Jian-Hua3, Pan Jie-Nan1
1 Institute of Resource and Environment,Henan Polytechnic University,Jiaozuo 454003,Henan; 2 Key Laboratory of Biogenic Traces and Sedimentary Minerals of Henan Province,Jiaozuo 454003,Henan; 3 School of Geosciences,China University of Petroleum(East China),Qingdao 266580,Shandong
Abstract This paper studied the bioturbation-type reservoirs well-developed in the Ordovician Yingshan and Yijianfang Formations of the Tahe Oilfield based on core observation,cathodoluminescence microscopy,three-dimensional X-ray microscope,and X-ray diffractometer. Two kinds of trace fossils (i.e.,Thalassinoides and Helminthopsis) were identified;the former is most prevalent with the bioturbated volume up to 90%. The burrow infillings are composed mainly of dolomite,accounting for more than 90%. The host rock is micrite. Along with the change of depositional environment during the Early-Middle Ordovician transgression and regression in Tahe Oilfield,burrows also show obvious periodicity. Three-dimensional geological model of the bioturbation-type reservoir in the study area was established using the three-dimensional reconstruction software package by 3ds Max software. This study visualizes the internal structures and microscopic features of the bioturbation reservoir in Tahe Oilfield and provides a solid academic basis for subsequently investigating macro-heterogeneity and micro-anisotropy,quantitatively characterizing the percolation characteristics on the microscopic scale of those bioturbation reservoirs. In addition,it also provides a new idea to improve and perfect the model of Ordovician reservoir of Tahe Oilfield.
Fund:Co-funded by the National Natural Science Foundation of China(No.41472104)and the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(No.17IRTSTHN025)
About author: Niu Yong-Bin,born in 1980,is an associate professor of Henan Polytechnic University. He is mainly engaged in researches of applied ichnology and sedimentology. E-mail: niuyongbin@hpu.edu.cn.
Cite this article:
Niu Yong-Bin,Cui Sheng-Li,Hu Ya-Zhou et al. Three-dimensional reconstruction and their significance of bioturbation-type reservoirs of the Ordovician in Tahe Oilfield[J]. JOPC, 2018, 20(4): 691-702.
Niu Yong-Bin,Cui Sheng-Li,Hu Ya-Zhou et al. Three-dimensional reconstruction and their significance of bioturbation-type reservoirs of the Ordovician in Tahe Oilfield[J]. JOPC, 2018, 20(4): 691-702.
[1] 白斌,朱如凯,吴松涛,杨文静,Jeff Gelb,Allen Gu,张响响,苏玲. 2013. 利用多尺度CT成像表征致密砂岩微观孔喉结构. 石油勘探与开发, 40(3): 329-333. [Bai B,Zhu R K,Wu S T,Yang W J,Jeff Gelb,Allen Gu,Zhang X X,Su L.2013. Multi-scale method of Nano(Micro)-CT study on microscopic pore structure of tight sandstone. Petroleum Exploration and Development, 40(3): 329-333] [2] 白斌,朱如凯,吴松涛,崔景伟,苏玲,李婷婷. 2014. 非常规油气致密储集层微观孔喉结构表征新技术及意义. 中国石油勘探, 19(3): 78-86. [Bai B,Zhu R K,Wu S T,Cui J W,Su L,Li T T.2014. New micro-throat structural characterization techniques for unconventional tight hydrocarbon reservoir. China Petroleum Exploration, 19(3): 78-86] [3] 白瑞婷,李治平,南珺祥,赖枫鹏,李洪,韦青. 2016. 考虑启动压力梯度的致密砂岩储集层渗透率分形模型. 天然气地球科学, 27(1): 142-148. [Bai R T,Li N P,Nan J X,Lai F P,Li H,Wei Q.2016. The fractal permeability model in tight sand reservoir accounts for start-up gradient. Natural Gas Geoscience, 27(1): 142-148] [4] 陈红汉,吴悠,丰勇,鲁子野,胡守志,云露,漆立新. 2014. 塔河油田奥陶系油气成藏期次及年代学. 石油与天然气地质, 35(6): 806-819. [Chen H H,Wu Y,Feng Y,Lu Z Y,Hu S Z,Yun L,Qi L X.2014. Timing and chronology of hydrocarbon charing in the Ordovician of Tahe oilfield,Tarim Basin,NW China. Oil and Gas Geology, 35(6): 806-819] [5] 陈世杰,赵淑萍,马巍,杜玉霞,邢莉莉. 2013. 利用CT扫描技术进行冻土研究的现状和展望. 冰川冻土, 35(1): 193-200. [Chen S J,Zhao S P,Ma W,Du Y X,Xing L L.2013. Studying frozen soil with CT technology: Present studies and prospects. Journal of Glaciology and Geocryology, 35(1): 193-200] [6] 陈曦,吕波,黄素,何施雨,杜亚曦,朱讯. 2011. 陕西韩城—旬邑地区中奥陶统马家沟组豹斑白云岩研究. 新疆地质, 29(2): 222-225. [Chen X,Lü B,Huang S,He S Y,Du Y X,Zhu X.2011. Study of leopard fur dolomite in mid-Ordovician Majiagou formation Hancheng-Xunyi distinct in Shanxi Province. Xinjiang Geology, 29(2): 222-225] [7] 邓小江,梁波,莫耀汉,李国蓉,王鑫,于海波,乔占峰. 2007. 塔河油田奥陶系一间房组礁滩相储集层特征及成因机制新认识. 地质科技情报, 26(4): 63-69. [Deng X J,Liang B,Mo Y H,Li G R,Wang X,Yu H B,Qiao Z F.2007. A new know of characteristics and genesis of reef and bank facies reservoirs in Ordovician Yijiangfang Formation in Tahe oilfield. Geological Science and Technology Information, 26(4): 63-69] [8] 邓知秋,滕奇志. 2013. 三维岩心图像裂缝自动识别. 计算机与数字工程, 41(1): 98-100. [Deng Z Q,Teng Q Z.2013. Three-dimensional image-based core crack automatic recognition. Computer & Digital Engineering, 41(1): 98-100] [9] 顾家裕,方辉,蒋凌志. 2001. 塔里木盆地奥陶系生物礁的发现及其意义. 石油勘探与开发, 28(4): 1-7. [Gu J Y,Fang H,Jiang L Z.2001. The significance of Ordovician reef discovery in Tarim Basin. Petroleum Exploration and Development, 28(4): 1-7] [10] 顾军,杨昌龙. 2009. 基于CYT资料的储集层岩石特性参数定量预测. 中国矿业大学学报, 38(2): 259-262. [Gu J,Yang C L.2009. Quantitative prediction of characteristic parameters of reservoir rock based on detection data of direct detecter of space source. Journal of China University of Miming & Technology, 38(2): 259-262] [11] 郭建华,沈昭国,李建明. 1994. 塔北东段下奥陶统白云石化作用. 石油与天然气地质, 15(1): 51-59. [Guo J H,Shen Z G,Li J M.1994. Dolomitization of Lower Ordovician in eastern sector of north Tarim region. Oil & Gas Geology, 15(1): 51-59] [12] 韩革华,漆立新,李宗杰,樊政军. 2006. 塔河油田奥陶系碳酸盐岩缝洞型储集层预测技术. 石油与天然气地质, 27(6): 860-870. [Han G H,Qi L X,Li Z J,Fan Z J.2006. Prediction of the Ordovician fractured-vuggy carbonate reservoirs in Tahe oilfield. Oil & Gas Geology, 27(6): 860-870] [13] 郝毅,林良彪,周进高,倪超,张建勇,陈薇. 2012. 川西北中二叠统栖霞组豹斑灰岩特征与成因. 成都理工大学学报(自然科学版), 39(6): 651-656. [Hao Y,Lin L B,Zhou J G,Ni C,Zhang J Y,Chen W.2012. Characteristics and genesis of leopard limestone in Middle Permian Qixia Formation,Northwest Sichuan,China. Journal of Chengdu University of Technology(Science and Technology Edition), 39(6): 651-656] [14] 贾振远,马淑媛. 1984. 山东莱芜地区下古生界豹斑灰岩的成因及其意义. 地质论评, 30(3): 224-228. [Jia Z Y,Ma S Y.1984. The origin and significance of Lower Paleozoic patchy limestone in Laiwu,Shandong Province. Geological Review, 30(3): 224-228] [15] 康玉柱. 2003. 塔里木盆地塔河大油田形成的地质条件及前景展望. 中国地质, 30(3): 315-319. [Kang Y Z.2003. Geological characteristics of formation of the large Tahe oilfield in the Tarim Basin and its prospects. Geology in China, 30(3): 315-319] [16] 孔强夫,周灿灿,张艳,李霞,李潮流,胡法龙. 2015. 基于数字岩心岩石电性数值模拟方法综述. 地球物理学进展, 30(2): 718-724. [Kong Q F,Zhou C C,Zhang Y,Li X,Li C L,Hu F L.2015. Numerical simulation methods of rock electrical properties based on digital cores: A review. Progress in Grophysics, 30(2): 718-724] [17] 李阳,金强,钟建华,邹胜章. 2016. 塔河油田奥陶系岩溶分带及缝洞结构特征. 石油学报, 37(3): 289-298. [Li Y,Jin Q,Zhong J H,Zou S Z.2016. Karst zonings and fracture-cave structure characteristics of Ordovician reservoirs in Tahe oilfield,Tarim Basin. Acta Petrolei Sinica, 37(3): 289-298] [18] 李玉彬,李向良,李奎祥. 1999. 利用计算机层析(CT)确定岩心的基本物理参数. 石油勘探与开发, 26(6): 86-90. [Li Y B,Li X L,Li K X.1999. Using computed tomography to determine the basic petrophysical properties of cores. Petroleum Exploration and Development, 26(6): 86-90] [19] 刘文,李永宏,张涛,李国蓉. 2002. 塔河油田奥陶系碳酸盐岩沉积相及地层学研究. 石油实验地质, 24(2): 104-109. [Liu W,Li Y H,Zhang T,Li G R.2002. Study of the sedimentary facies and sequences stratigraphy of the Ordovician carbonate rock in Tahe oilfield. Petroleum Geology and Experiment, 24(2): 104-109] [20] 马永生,郭彤楼,赵雪凤,蔡勋育. 2007. 普光气田深部优质白云岩储集层形成机制. 中国科学(D辑: 地球科学),37(S2): 43-52. [Ma Y S,Guo T L,Zhao X F,Cai X Y.2007. The formation mechanism of high-quality dolomite reservoir in the deep of Puguang Gas Field. Science in China(Series D: Earth Sciences),37(S2): 43-52] [21] 牛永斌,钟建华,王培俊,单婷婷,李润泽. 2010. 成岩作用对塔河油田二区奥陶系碳酸盐岩储集空间发育的影响. 中国石油大学学报(自然科学版), 34(6): 13-18. [Niu Y B,Zhong J H,Wang P J,Shan T T,Li R Z.2010. Effect of diagenesis on accumulate capability of Ordovician carbonate rock in block 2 of Tahe oilfield. Journal of China University of Petroleum(Edition of Natural Science), 34(6): 13-18] [22] 牛永斌,崔胜利,胡亚洲,钟建华,王培俊. 2017. 塔里木盆地塔河油田奥陶系数字岩心图像中生物扰动的定量表征. 古地理学报, 19(2): 353-363. [Niu Y B,Cui S L,Hu Y Z,Zhong J H,Wang P J.2017. Quantitative characterization of bioturbation based on digital image analysis of the Ordovician core from Tahe oilfield of Tarim Basin. Journal of Palaeogeography(Chinese Edition), 19(2): 353-363] [23] 牛永斌,胡亚洲,高文秀,董小波,崔胜利. 2018. 豫西北奥陶系马家沟组三段遗迹组构及沉积演化规律. 地质学报, 92(1): 15-27. [Niu Y B,Hu Y Z,Gao W X,Dong X B,Cui S L.2018. Ichnofabrics and sedimentary evolution of the third member of Ordovician Majiagou formation in northwestern Henan,Province. Acta Geologica Sinica, 92(1): 15-27] [24] 吴胜和,纪友亮,岳大力,印森林. 2013. 碎屑沉积地质体构型分级方案探讨. 高校地质学报, 19(1): 12-22. [Wu S H,Ji Y L,Yue D L,Yin S L.2013. Discussion on hierarchical scheme of architecture units in clastic deposits. Geological Journal of China Universities, 19(1): 12-22] [25] 杨式溥,张建平,杨美芳. 2004. 中国遗迹化石,北京: 科学出版社. [Yang S P,Zhang J P,Yang M F.2004. Trace Fossils in China. Beijing: Science Press] [26] 尹帅,谢润成,丁文龙,单钰铭,周文. 2017. 常规及非常规储集层岩石分形特征对渗透率的影响. 岩性油气藏, 29(4): 81-90. [Yin S,Xie R C,Ding W L,Shan Y M,Zhou W.2017. Influences of fractal characteristics of reservoir rocks on permeability. Lithologic Reservoirs, 29(4): 81-90] [27] 尹燕义,王国娟,方少仙. 1996. 生物扰动对砂岩储集性和含油性的影响. 石油勘探与开发, 23(5): 29-31. [Yin Y Y,Wang G J,Fang S X.1996. The influence of the bioturbation on the quality of the reservoir and oil-bearing capability of the sandstone reservoirs. Petroleum Exploration and Development, 23(5): 29-31] [28] 张恒荣,何胜林,吴进波,吴一雄,梁玉楠. 2017. 一种基于Kozeny-Carmen方程改进的渗透率预测新方法. 吉林大学学报(地球科学版), 47(3): 899-906. [Zhang H R,He S L,Wu J B,Wu Y X,Liang Y N.2017. A new method for predicting permeability based on modified Kozeny-Carmen equation. Journal of Jilin University(Earth Science Edition), 47(3): 899-906] [29] 赵碧华. 1989. 用CT扫描技术观察油层岩心的孔隙结构. 西南石油大学学报(自然科学版), 11(2): 57-64. [Zhao B H.1989. Visualization of pore structures in rocks with computerized tomography of X-rays. Journal of Southwestern Petroleum Institute, 11(2): 57-64] [30] 赵文智,杨晓萍,Kershaw S.2006. 四川盆地南部志留系碳酸盐泥丘储集层发育特征. 地质学报, 85(10): 1615. [Zhao W Z,Yang X P,Kershaw S.2006. Characteristics of carbonate mud-mound reservoir in Silurian in the southern Sichuan Basin. Acta Geologica Sinica, 85(10): 1615] [31] 郑和荣,刘春燕,吴茂炳,王毅. 2009. 塔里木盆地奥陶系颗粒石灰岩埋藏溶蚀作用. 石油学报, 30(1): 9-15. [Zheng H R,Liu C Y,Wu M B,Wang Y.2009. Burial dissolution of Ordovician granule limestone in Tarim Basin. Acta Petrolei Sinica, 30(1): 9-15] [32] 钟建华,孔凡亮,李阳,袁向春,高玉飞,梁刚,艾合买提江·阿不都热和曼,陈鑫,牛永斌,王培俊. 2010. 塔河油田四区奥陶系碳酸盐岩油藏中的缝合线研究. 地质论评, 56(6): 841-850. [Zhong J H,Kong F L,Li Y,Yuan X C,Gao Y F,Liang G,Ahmatjan A,Chen X,Niu Y B,Wang P J.2010. Research of stylolites in Ordovician carbonate reservoirs of the 4th Block,Tahe oilfield,Tarim Basin. Geological Review, 56(6): 841-850] [33] Baniak G M,Gingras M K,Pemberton S G.2013. Reservoir characterization of burrow-associated dolomites in the Upper Devonian Wabamun Group,Pine Creek gas field,central Alberta,Canada. Marine and Petroleum Geology, 48: 275-292. [34] Bednarz M,McIlroy D.2015. Organism-sediment interactions in shale-hydrocarbon reservoir facies: Three-dimensional reconstruction of complex ichnofabric geometries and pore-networks. International Journal of Coal Geology, 150: 238-251. [35] Bromley R G,Ekdale A A.1986. Composite ichnofabrics and tiering of burrows. Geological Magazine, 123(1): 59-65. [36] Gingras M K,Pemberton S G,Henk F,MacEachern J A,Mendoza C,Rostron B,O'Hare R,Spila M,Konhauser K.2009. Applications of ichnology to fluid and gas production in hydrocarbon reservoirs: 129-143. [37] Gingras M K,Pemberton S G,Smith M.2014. Bioturbation: Reworking sediments for better or worse. Oilfield Review, 26(4): 46-58. [38] Golab J A,Smith J J,Clark A K,Blome C D.2017. Effects of Thalassinoides ichnofabrics on the petrophysical properties of the Lower Cretaceous Lower Glen Rose Limestone,Middle Trinity Aquifer,Northen Bexar County,Texax. Sedimentary geology, 351: 1-10. [39] Gorden J B,Pemberton S G,Gingras M K,Konhauser K O.2010. Biogenically enhanced permeability: A petrographic analysis of Macaronichnus segregatus in the Lower Cretaceous Bluesky Formation,Alberta,Canada. AAPG Bulletin, 94(11): 1779-1795. [40] Khabbazi A E,Hinebaugh J,Bazylak A.2015. Analytical tortuosity-porosity correlations for Sierpinski carpet fractal geometries. Chaos,Solitons & Fractals, 78: 124-133. [41] Khabbazi A E,Hinebaugh J,Bazylak A.2016. Determining the impact of rectangular grain aspect ratio on tortuosity-porosity correlations of two-dimensional stochastically generated porous media. Science Bulletin, 61(8): 601-611. [42] La Croix A D,Gingras M K,Dashtgard S E,Pemberton S G.2012. Computer modeling bioturbation: The creation of porous and permeable fluid-flow pathways. AAPG Bulletin, 96(3): 545-556. [43] La Croix A D,Gingras M K,Pemberton S G,Mendoza C A,MacEachern J A,Lemiski R T.2013. Biogenically enhanced reservoir properties in the Medicine Hat gas field,Alberta,Canada. Marine & Petroleum Geology, 43: 464-477. [44] Li C,Xu P,Qiu S,Zhou Y.2016. The gas effective permeability of porous media with Klinkenberg effect. Journal of Natural Gas Science and Engineering, 34: 534-540. [45] Lu X B,Wang Y,Tian F,Li X H,Yang D B,Li T,Lü Y P,He X M.2017. New insights into the carbonate karstic fault system and reservoir formation in the Southern Tahe area of the Tarim Basin. Marine & Petroleum Geology, 86: 587-605. [46] Pemberton S G,Gingras M K.2005. Classification and characterizations of biogenically enhanced permeability. AAPG bulletin, 89(11): 1493-1517. [47] Tian F,Jin Q,Lu X B,Lei Y H,Zhang L K,Zheng S Q,Zhang H F,Rong Y S,Liu N G.2016. Multi-layered Ordovician paleokarst reservoir detection and spatial delineation: A case study in the Tahe Oilfield,Tarim Basin,western China. Marine & Petroleum Geology, 69: 53-73. [48] Tian F,Lu X B,Zheng S Q,Zhang H F,Rong Y S,Yang D B,Liu N G.2017. Structure and filling characteristics of paleokarst reservoirs in the northern Tarim Basin,revealed by outcrop,core and borehole images. Open Geosciences, 9(1): 266-280. [49] Zhang W H,Fu L Y,Zhang Y,Jin W J.2016. Computation of elastic properties of 3D digital cores from the Longmaxi shale. Applied Geophysics, 13(2): 364-374.