Depositional architecture of fluvial-dominated shoal water delta
Wu Sheng-He1,2, Xu Zhen-Hua1,2, Liu Zhao1,2
1 College of Geosciences, China University of Petroleum(Beijing),Beijing 102249,China; 2 State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(Beijing),Beijing 102249,China
Abstract Shoal water delta has been researched over 60 years since its concept was proposed. Although great progress in the research on shoal water delta has been made in many aspects,there are still debates on the concept,genetic types of sand bodies and depositional architectural patterns of shoal water delta. In this paper,we discuss the conceptual connotation of shoal water delta,and summarize its characteristics and patterns of depositional architecture. According to wave base and water depth ratio(ratio of initial channel depth to basin depth at river mouth),the delta could be divided into shoal water delta,relatively shallow water delta and relatively deep water delta. The shoal water delta,as the typical shallow water delta,is developed where the water depth ratio is greater or equal to 1. Within shoal water delta the distributary channel could incise through underlying prodelta deposits. According to the combination pattern of channels and mouth bars in delta front,fluvial-dominated shoal water delta can be classified into two end-member types,including distributary-mouth bar type and fingered bar type. Distributary-mouth bar type delta is the system of multi-order bifurcated mouth bars and distributary channels,which is a fan shape in the plane,and presents the combination pattern of “channels extending between mouth bars”. In contrast,fingered bar type is the system of fingered bar and inter-distributary-mouth bay,which is a branched shape in the plane,and presents the combination pattern of “channels extending within mouth bars”.
Fund:Co-funded by the National Natural Science Foundation of China(No.41772101) and the Sub-project of Significant Petroleum Special Projects of China (No.2017ZX05009001-002)
About author: Wu Sheng-He,born in 1963,is a professor and Ph.D. supervisor of China University of Petroleum(Beijing). Now he is mainly engaged in researchs and teaching of reservoir geology,reservoir characterization and 3D geological modeling. E-mail: reser@cup.edu.cn.
Cite this article:
Wu Sheng-He,Xu Zhen-Hua,Liu Zhao. Depositional architecture of fluvial-dominated shoal water delta[J]. JOPC, 2019, 21(2): 202-215.
Wu Sheng-He,Xu Zhen-Hua,Liu Zhao. Depositional architecture of fluvial-dominated shoal water delta[J]. JOPC, 2019, 21(2): 202-215.
[1] 操应长,韩敏,王艳忠,谭明友,张营革. 2010. 济阳坳陷车镇凹陷沙二段浅水三角洲沉积特征及模式. 石油与天然气地质, 31(5): 576-582,601. [Cao Y C,Han M,Wang Y Z,Tan M Y,Zhang Y G.2010. Sedimentary characteristics and models of shallow-water delta deposits in the second member of the Shahejie Formation in the Chezhen Sag,the Jiyang Depression. Oil & Gas Geology, 31(5): 576-582,601] [2] 付晶,吴胜和,王哲,刘钰铭. 2015. 湖盆浅水三角洲分流河道储层构型模式: 以鄂尔多斯盆地东缘延长组野外露头为例. 中南大学学报(自然科学版), 46(11): 4174-4182. [Fu J,Wu S H,Wang Z,Liu Y M.2015. Architecture model of shallow-water delta distributary channel in lake basin: A case study of the Yanchang Formation outcrops in the eastern margin of Ordos Basin. Journal of Central South University(Science and Technology), 46(11): 4174-4182] [3] 冯文杰,吴胜和,张可,赵文凯,贾凤娟. 2017. 曲流河浅水三角洲沉积过程与沉积模式探讨: 沉积过程数值模拟与现代沉积分析的启示. 地质学报, 91(9): 2047-2064. [Feng W J,Wu S H,Zhang K,Zhao W K,Jia F J.2017. Depositional process and sedimentary model of meandering-river shallow delta: Insights from numerical simulation and modern deposition. Acta Geologica Sinica, 91(9): 2047-2064] [4] 龚绍礼. 1986. 河南禹县早二叠世晚期浅水三角洲沉积和聚煤环境. 煤田地质与勘探, 13(6): 2-9. [Gong S L.1986. Shallow delta and coal environment of upper Permian in Yuxian,Henan. Coal Geology & Exploration, 13(6): 2-9] [5] 郭英海,刘焕杰,李壮福,何康林. 1995. 晋中北山西组浅水三角洲沉积特征及聚煤作用. 中国矿业大学学报, 24(1): 64-70. [Guo Y H,Liu H J,Li Z F,He K L.1995. Sedimentary characteristics and coal-accumulating process of shallow-water delta of Shanxi Formation in the middle-north district of Shanxi Province. Journal of China University of Mining & Technology, 24(1): 64-70] [6] 韩晓东,楼章华,姚炎明,杨卫东,蔡希源. 2000. 松辽盆地湖泊浅水三角洲沉积动力学研究. 矿物学报, 20(3): 305-313. [Han X D,Lou Z H,Yao Y M,Yang W D,Cai X Y.2000. Analysis of the sedimentary dynamic process of the shallow-water lake delta in the Songliao Basin,Northeast China. Acta Mineralogica Sinica, 20(3): 305-313] [7] 胡明毅,马艳荣,刘仙晴,王辉,王延奇. 2009. 大型坳陷型湖盆浅水三角洲沉积特征及沉积相模式: 以松辽盆地茂兴—敖南地区泉四段为例. 石油天然气学报, 31(3): 13-17. [Hu M Y,Ma Y R,Liu X Q,Wang H,Wang Y Q.2009. Sedimentary characteristics and mode of shallow delta in large scale downwrap lacustrine basin: By taking Quan-4 Formation in Maoxing and Aonan Region in Songliao Basin for example. Journal of Oil and Gas Technology, 31(3): 13-17] [8] 李增学,魏久传,李守春. 1995. 鲁西河控浅水三角洲沉积体系及煤聚集规律. 煤田地质与勘探, 23(2): 7-13. [Li Z X,Wei J C,Li S C.1995. The depositional system of fluvial-controlled shallow water delta and coal-accumulation analysis in western Shandong. Coal Geology & Exploration, 23(2): 7-13] [9] 刘君龙,纪友亮,杨克明,周勇,陈贤良. 2015. 浅水湖盆三角洲岸线控砂机理与油气勘探意义: 以川西坳陷中段蓬莱镇组为例. 石油学报, 36(9): 1060-1073,1155. [Liu J L,Ji Y L,Yang K M,Zhou Y,Chen X L.2015. Mechanism of lake shoreline control on shoal water deltaic sandbodies and its significance for petroleum exploration: A case study of Penglaizhen Formation in the middle part of western Sichuan depression. Acta Petrolei Sinica, 36(9): 1060-1073,1155] [10] 楼章华,卢庆梅,蔡希源,董百万,张立庆. 1998. 湖平面升降对浅水三角洲前缘砂体形态的影响. 沉积学报, 16(4): 27-31. [Lou Z H,Lu Q M,Cai X Y,Dong B W,Zhang L Q.1998. Influence of lake level fluctuation on sandbody shapes at shallow-water delta front. Acta Sedimentologica Sinica, 16(4): 27-31] [11] 楼章华,兰翔,卢庆梅,蔡希源. 1999. 地形、气候与湖面波动对浅水三角洲沉积环境的控制作用:以松辽盆地北部东区葡萄花油层为例. 地质学报, 73(1): 83-92. [Lou Z H,Lan X,Lu Q M,Cai X Y.1999. Controls of the topography,climate and lake level fluctuation on the depositional environment of a shallow-water delta: A case study of the cretaceous Putaohua reservoir in the northern part of Songliao Basin. Acta Geologica Sinica, 73(1): 83-92] [12] 楼章华,袁笛,金爱民. 2004. 松辽盆地北部浅水三角洲前缘砂体类型、特征与沉积动力学过程分析. 浙江大学学报(理学版), 31(2): 211-215. [Lou Z H,Yuan D,Jin A M.2004. Types,characteristics of sandbodies in shallow-water delta front and sedimentary models in Northern Songliao Basin,China. Journal of Zhejiang University(Science Edition), 31(2): 211-215] [13] 吕晓光,李长山,蔡希源,李伯虎,赵翰卿. 1999. 松辽大型浅水湖盆三角洲沉积特征及前缘相储层结构模型. 沉积学报, 17(4): 572-577. [Lü X G,Li C S,Cai X Y,Li B H,Zhao H Q.1999. Depositional characteristics and front facies reservoir framework model in Songliao shallow lacustrine delta. Acta Sedimentologica Sinica, 17(4): 572-577] [14] 邵龙义,郑明泉,侯海海,董大啸,王海生. 2018. 山西省石炭—二叠纪含煤岩系层序—古地理与聚煤特征. 煤炭科学技术, 46(2): 1-8,34. [Shao L Y,Zheng M Q,Hou H H,Dong D X,Wang H S.2018. Characteristics sequence-paleogeography and coal accumulation of Permo-Carboniferous coal measures in Shanxi Province. Coal Science and Technology, 46(2): 1-8,34] [15] 孙永传,李蕙生,邓新华,蔡昇. 1986. 山西寿阳—阳泉地区石炭—二叠系沉积环境及其沉积特征. 地球科学, 11(3): 273-280. [Sun Y C, Li H S, Deng X H, Cai S.1986. Carboniferous-Permian sedimentary environments and their sedimentary characteristics in Shouyang-Yangquan aera, Shanxi Province. Earth Science, 11(3): 273-280] [16] 孙雨,马世忠,姜洪福,刘云燕,丛林. 2010. 松辽盆地三肇凹陷葡萄花油层河控浅水三角洲沉积模式. 地质学报, 84(10): 1502-1509. [Sun Y,Ma S Z,Jiang H F,Liu Y Y,Cong L.2010. Sedimentary mode of shallow lacustrine fluvial-dominated delta of putaohua reservoirs in the Sanzhao Depression,Songliao Basin. Acta Geologica Sinica, 84(10): 1502-1509] [17] 徐振华,吴胜和,刘钊,赵军寿,吴峻川,耿红柳,张天佑,刘照玮. 2019. 浅水三角洲前缘指状砂坝构型特征: 以渤海湾盆地渤海BZ25油田新近系明化镇组下段为例. 石油勘探与开发, 46(2): 1-12. [Xu Z H,Wu S H,Liu Z,Zhao J S,Wu J C,Geng L H,Zhang T Y,Liu Z W.2019. Reservoir architecture of the finger bar within shoal water delta front: Insights from the Lower Member of Minghuazhen Formation,Neogene,Bohai BZ25 Oilfield,Bohai Bay Basin,East China. Petroleum Exploration and Development, 46(2): 1-12] [18] 薛良清,Galloway W E.1991. 扇三角洲、辫状河三角洲与三角洲体系的分类. 地质学报, 65(2): 141-153. [Xue L Q,Galloway W E.1991. Fan-delta,braid delta and the classification of delta systems. Acta Geologica Sinica, 65(2): 141-153] [19] 薛庆远. 1995. 山东滕南矿区山西组浅水三角洲的沉积构成和聚煤特征. 中国矿业大学学报, 24(2): 43-51. [Xue Q Y.1995. Depositional architectures and coal-forming features of shallow-water delta system in the Tengnan coal mining district,Shandong Province. Journal of China University of Mining & Technology, 24(2): 43-50] [20] 于兴河,李胜利,李顺利. 2013. 三角洲沉积的结构-成因分类与编图方法. 沉积学报, 31(5): 782-797. [Yu X H,Li S L,Li S L.2013. Texture-genetic classifications and mapping methods for deltaic deposits. Acta Sedimentologica Sinica, 31(5): 782-797] [21] 曾洪流,赵贤正,朱筱敏,金凤鸣,董艳蕾,王余泉,朱茂,郑荣华. 2015. 隐性前积浅水曲流河三角洲地震沉积学特征: 以渤海湾盆地冀中坳陷饶阳凹陷肃宁地区为例. 石油勘探与开发. 42(5): 566-576. [Zeng H L,Zhao X Z,Zhu X M,Jin F M,Dong Y L,Wang Y Q,Zhu M,Zheng R H.2015. Seismic sedimentology characteristics of sub-clinoformal shallow-water meandering river delta: A case from the Suning area of Raoyang sag in Jizhong depression,Bohai Bay Basin,NE China. Petroleum Exploration and Development, 42(5): 566-576] [22] 曾灿,尹太举,宋亚开. 2017. 湖平面升降对浅水三角洲影响的沉积数值模拟实验. 地球科学, 42(11): 2095-2104. [Zeng C,Yin T J,Song Y K.2017. Experimental on numerical simulation of the impact of lake level plane fluctuation on shallow water delta. Earth Science, 42(11): 2095-2104] [23] 张昌民,尹太举,朱永进,柯兰梅. 2010. 浅水三角洲沉积模式. 沉积学报, 28(5): 933-944. [Zhang C M,Yin T J,Zhu Y J,Ke L M.2010. Shallow-water deltas and models. Acta Sedimentologica Sinica, 28(5): 933-944] [24] 赵翰卿. 1987. 松江盆地大型叶状三角洲沉积模式. 大庆石油地质与开发, 6(4): 1-10. [Zhao H Q.1987. A sedimentary scheme for a large leaf-like delta in Songliao Basin. Petroleum Geology & Oilfield Development in Daqing, 6(4): 1-10] [25] 朱筱敏,刘媛,方庆,李洋,刘云燕,王瑞,宋静,刘诗奇,曹海涛,刘相男. 2012. 大型坳陷湖盆浅水三角洲形成条件和沉积模式: 以松辽盆地三肇凹陷扶余油层为例. 地学前缘, 19(1): 89-99. [Zhu X M,Liu Y,Fang Q,Li Y,Liu Y Y,Wang R,Song J,Liu S Q,Cao H T,Liu X N.2012. Formation and sedimentary model of shallow delta in lare-scale lake: Example from Cretaceous Quantou Formation in Sanzhao Sag,Songliao Basin. Earth Science Frontiers, 19(1): 89-99] [26] 朱筱敏,潘荣,赵东娜,刘芬,吴冬,李洋,王瑞. 2013. 湖盆浅水三角洲形成发育与实例分析. 中国石油大学学报(自然科学版), 37(5): 7-14. [Zhu X M,Pan R,Zhao D N,Liu F,Wu D,Li Y,Wang R.2013. Formation and development of shallow-water deltas in lacustrine basin and typical case analyses. Journal of China University of Petroleum(Natural Science Edition), 37(5): 7-14] [27] 朱筱敏,钟大康,袁选俊,张惠良,朱世发,孙海涛,高志勇,鲜本忠. 2016. 中国含油气盆地沉积地质学进展. 石油勘探与开发, 43(5): 820-829. [Zhu X M,Zhong D K,Yuan X J,Zhang H L,Zhu S F,Sun H T,Gao Z Y,Xian B Z.2016. Development of sedimentary geology of petroliferous basins in China. Petroleum Exploration and Development, 43(5): 820-829] [28] 邹才能,赵文智,张兴阳,罗平,王岚,刘柳红,薛叔浩,袁选俊,朱如凯,陶士振. 2008. 大型敞流坳陷湖盆浅水三角洲与湖盆中心砂体的形成与分布. 地质学报, 82(6): 813-825. [Zou C N,Zhao W Z,Zhang X Y,Luo P,Wang L,Liu L H,Xue S H,Yuan X J,Zhu R K,Tao S Z.2008. Formation and distribution of shallow-water deltas and central-basin sandbodies in large open depression lake basins. Acta Geologica Sinica, 82(6): 813-825] [29] Blum M D,Roberts H H.2009. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nature Geoscience, 2(7): 488-491. [30] Burpee A P,Slingerland R L,Edmonds D A,Parsons D,Best J,Cederberg J,McGuffin A,Caldwell R,Nijhuis A,Royce J.2015. Grain-size controls on the morphology and internal geometry of river-dominated deltas. Journal of Sedimentary Research, 85(6): 699-714. [31] Caldwell R L,Edmonds D A.2014. The effects of sediment properties on deltaic processes and morphologies: A numerical modeling study. Journal of Geophysical Research-Earth Surface, 119(5): 961-982. [32] Coleman J M,Wright L D.1975. Modern river deltas: Variability of processes and sand bodies//In: Broussard M L(ed). Deltas,Models for Exploration. Houston: Houston Geological Society,99-149. [33] Donaldon C A.1974. Pennsylvanian Sedimentation of Central Appalachians. Geological Society of America Special Paper, 148: 47-48. [34] DuMars A J.2002. Distributary mouth bar formation and channel bifurcation in the Wax Lake delta,Atchafalaya Bay,Louisiana. Louisiana: Louisiana State University,18-29. [35] Edmonds D A,Slingerland R L.2007. Mechanics of river mouth bar formation: Implications for the morphodynamics of delta distributary networks. Journal of Geophysical Research-Earth Surface:112(F02034F2). [36] Edmonds D A,Slingerland R L.2008. Stability of delta distributary networks and their bifurcations. Water Resources Research, 44(9): 303-312. [37] Edmonds D A,Slingerland R L.2010. Significant effect of sediment cohesion on delta morphology. Nature Geoscience, 3(2): 105-109. [38] Edmonds D,Slingerland R,Best J,Parsons D,Smith N.2010. Response of river-dominated delta channel networks to permanent changes in river discharge. Geophysical Research Letters, 37(12): L12404. [39] Edmonds D A,Shaw J B,Mohrig D.2011. Topset-dominated deltas: A new model for river delta stratigraphy. Geology, 39(12): 1175-1178. [40] Fisher W L,Brown L F,Scott A J,Mcgowen J H.1969. Delta systems in the exploration for oil and gas. Houston: University of Texas at Austin Bureau of Economic Geology. [41] Fisk H N.1955. Sand facies of recent Mississippi Delta deposits: 4th World Petroleum Congr.(Rome)Proc.,Sec. lc: 377-398. [42] Galloway W E.1975. Process Framework for Describing the Morphologic and Stratigraphic Evolution of Deltaic Depositional Systems: Deltas: Models for Exploration. Houston: Houston Geological Society,87-98. [43] Garcia-Garcia F,Corbi H,Soria J M,Viseras C.2011. Architecture analysis of a river flood-dominated delta during an overall sea-level rise(early Pliocene,SE Spain). Sedimentary Geology, 237(1-2): 102-113. [44] Jopling A V.1965. Hydraulic factors controlling the shape of laminae in laboratory detlas. Journal of Sedimentology Research,35(4): 777-791. [45] Jiménez-Robles A M,Ortega-Sánchez M,Losada M A.2016. Effects of basin bottom slope on jet hydrodynamics and river mouth bar formation. Journal of Geophysical Research: Earth Surface, 121(6): 1110-1133. [46] Kroonenberg S B,Rusakov G V,Svitoch A A.1997. The wandering of the Volga delta: A response to rapid Caspian sea-level change. Sedimentary Geology, 107(3-4): 189-209. [47] Lane R R,Jr J W D,Marx B D.2007. The effects of riverine discharge on temperature,salinity,suspended sediment and chlorophyll a,in a Mississippi delta estuary measured using a flow-through system. Estuarine Coastal & Shelf Science, 74(1-2): 145-154. [48] Mcpherson J G,Shanmugam G,Moiola R J.1987. Fan-delta and braid deltas: Varieties of coarse-grained deltas. Geological society of America Bulletin, 99: 331-340. [49] Nardin W,Edmonds D A.2014. Optimum vegetation height and density for inorganic sedimentation in deltaic marshes. Nature Geoscience, 7(10): 722. [50] Nardin W,Edmonds D A,Fagherazzi S.2016. Influence of vegetation on spatial patterns of sediment deposition in deltaic islands during flood. Advances in Water Resources, 93: 236-248. [51] Olariu C,Bhattacharya J P.2006. Terminal distributary channels and delta front architecture of river-dominated delta systems. Journal of Sedimentary Research, 76(1-2): 212-233. [52] Orton G J,Reading H G.1993. Variability of deltaic processes in terms of sediment supply,with particular emphasis on grain size. Sedimentology, 40(3): 475-512. [53] Overeem I,Kroonenberg S B,Veldkamp A,Groenesteijnc K, Rusakovd G V,Svitoche A A.2003. Small-scale stratigraphy in a large ramp delta: Recent and Holocene sedimentation in the Volga delta,Caspian Sea. Sedimentary Geology, 159(3-4): 133-157. [54] Postma G.1990. An analysis of the variation in delta architecture. Terra Nova, 2(2): 124-130. [55] Roberts H H,Adams R D,Cunningham R H W.1980. Evolution of sand-dominant subaerial phase,Atchafalaya Delta,Louisiana. AAPG Bulletin, 64(2): 264-279. [56] Roberts H H.1998. Delta switching: Early responses to the Atchafalaya River diversion. Journal of Coastal Research, 14(3): 882-899. [57] Rosen T,Xu Y J.2013. Recent decadal growth of the Atchafalaya River Delta complex: Effects of variable riverine sediment input and vegetation succession. Geomorphology, 194: 108-120. [58] Schwamborn G,Rachold V,Grigoriev M N.2002a. Late Quaternary sedimentation history of the Lena Delta. Quaternary International, 89(1): 119-134. [59] Schwamborn G J,Dix J K,Bull J M,Rachold V.2002b. High-resolution seismic and ground penetrating radar-geophysical profiling of a thermokarst lake in the western Lena Delta,Northern Siberia. Permafrost and Periglacial Processes, 13(4): 259-269. [60] Shaw J B,Mohrig D.2014. The importance of erosion in distributary channel network growth,Wax Lake Delta,Louisiana,USA. Geology, 42(1): 31-34. [61] Shaw J B,Mohrig D,Whitman S K.2013. The morphology and evolution of channels on the Wax Lake Delta,Louisiana,USA. Journal of Geophysical Research: Earth Surface, 118(3): 1562-1584. [62] Storms J E A,Stive M J F,Roelvink D A,Walstra D J.2007. Initial Morphologic and Stratigraphic Delta Evolution Related to Buoyant River Plumes: International Symposium on Coastal Engineering and Science of Coastal Sediment Process. New Orleans,Louisiana:736-748. [63] Tejedor A,Longjas A,Caldwell R,Edmonds D A,Zaliapin I,Foufoula-Georgiou E.2016. Quantifying the signature of sediment composition on the topologic and dynamic complexity of river delta channel networks and inferences toward delta classification. Geophysical Research Letters, 43(7): 3280-3287. [64] van Heerden I L.1983. Deltaic sedimentation in eastern Atchafalaya Bay. Louisiana: Center for Water Resources,Louisiana State University: Baton Rouge,117. [65] van Heerden I L,Roberts H H.1988. Facies development of Atchafalaya Delta,Louisiana: A modern bayhead delta. AAPG Bulletin, 72(4): 439-453. [66] Wright.1977. Sediment transport and deposition at river mouths: A synthesis. Geological Society of America Bulletin, 88: 857-868. [67] Yalin M S.1992. River Mechanic. Oxford: Pergamon Press,220.