1 Sung H,Ferlay J,Siegel RL,et al.Global cancer statistics 2020:Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2021,71(3):209-249. 2 Lambin P,Rios-Velazquez E,Leijenaar R,et al.Radiomics:extracting more information from medical images using advanced feature analysis[J].Eur J Cancer,2012,48(4):441-446. 3 Soni N,Priya S,Bathla G.Texture analysis in cerebral gliomas:a review of the literature[J].AJNR Am J Neuroradiol,2019,40(6):928-934. 4 Brown RA,Frayne R.A comparison of texture quantification techniques based on the Fourier and S transforms[J].Med Phys,2008,35(11):4998-5008. 5 Dettori L,Semler L.A comparison of wavelet,ridgelet,and curvelet-based texture classification algorithms in computed tomography[J].Comput Biol Med,2007,37(4):486-498. 6 Pfaehler E,Zhovannik I,Wei L,et al.A systematic review and quality of reporting checklist for repeatability and reproducibility of radiomic features[J].Phys Imaging Radiat Oncol,2021,20:69-75. 7 Yamashita R,Perrin T,Chakraborty J,et al.Radiomic feature reproducibility in contrast-enhanced CT of the pancreas is affected by variabilities in scan parameters and manual segmentation[J].Eur Radiol,2020,30(1):195-205. 8 Holli K,Lääperi AL,Harrison L,et al.Characterization of breast cancer types by texture analysis of magnetic resonance images[J].Acad Radiol,2010,17(2):135-141. 9 Karahaliou A,Vassiou K,Arikidis NS,et al.Assessing heterogeneity of lesion enhancement kinetics in dynamic contrast-enhanced MRI for breast cancer diagnosis[J].Br J Radiol,2010,83(988):296-309. 10 Parekh VS,Jacobs MA.Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI[J].NPJ Breast Cancer,2017,3:43. 11 Wang BT,Fan WP,Xu H,et al.Value of magnetic resonance imaging texture analysis in the differential diagnosis of benign and malignant breast tumors[J].Chin Med Sci J,2019,34(1):33-37. 12 Jiang X,Xie F,Liu L,et al.Discrimination of malignant and benign breast masses using automatic segmentation and features extracted from dynamic contrast-enhanced and diffusion-weighted MRI[J].Oncol Lett,2018,16(2):1521-1528. 13 中国抗癌协会乳腺癌专业委员会.中国抗癌协会乳腺癌诊治指南与规范(2021年版)[J].中国癌症杂志,2021,31(10):954-1040. 14 Li H,Zhu Y,Burnside ES,et al.Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set[J].NPJ Breast Cancer,2016,2:16012. 15 Wang H,Hu Y,Li H,et al.Preliminary study on identification of estrogen receptor-positive breast cancer subtypes based on dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI)texture analysis[J].Gland Surg,2020,9(3):622-628. 16 Xu A,Chu X,Zhang S,et al.Prediction breast molecular typing of invasive ductal carcinoma based on dynamic contrast enhancement magnetic resonance imaging radiomics characteristics:a feasibility study[J].Front Oncol,2022,12:799232. 17 王卉,胡云婷,谢元亮,等.基于DCE-MRI纹理分析鉴别雌激素受体阳性乳腺癌亚型的初步研究[J].实用医学杂志,2020,36(2):244-248. 18 Just N.Improving tumour heterogeneity MRI assessment with histograms[J].Br J Cancer,2014,111(12):2205-2213. 19 Foroutan P,Kreahling JM,Morse DL,et al.Diffusion MRI and novel texture analysis in osteosarcoma xenotransplants predicts response to anti-checkpoint therapy[J].PLoS One,2013,8(12):e82875. 20 Holli-Helenius K,Salminen A,Rinta-Kiikka I,et al.MRI texture analysis in differentiating luminal A and luminal B breast cancer molecular subtypes-a feasibility study[J].BMC Med Imaging,2017,17(1):69. 21 王春华,罗红兵,刘圆圆,等.基于药代动力学动态增强磁共振的影像组学特征对三阴型乳腺癌诊断价值的研究[J].磁共振成像,2021,12(2):29-33. 22 Wang J,Kato F,Oyama-Manabe N,et al.Identifying triple-negative breast cancer using background parenchymal enhancement heterogeneity on dynamic contrast-enhanced MRI:a pilot radiomics study[J].PLoS One,2015,10(11):e0143308. 23 Zhang S,Wang X,Yang Z,et al.Intra-and peritumoral radiomics model based on early DCE-MRI for preoperative prediction of molecular subtypes in invasive ductal breast carcinoma:a multitask machine learning study[J].Front Oncol,2022,12:905551. 24 何洋,赵伟鹏,佟仲生.新辅助化疗对乳腺癌ER PR HER2及Ki-67表达影响的研究进展[J].中国肿瘤临床,2020,47(22):1185-1188. 25 Vaidya JS,Massarut S,Vaidya HJ,et al.Rethinking neoadjuvant chemotherapy for breast cancer[J].BMJ,2018,360:5913. 26 Caudle AS,Gonzalez-Angulo AM,Hunt KK,et al.Predictors of tumor progression during neoadjuvant chemotherapy in breast cancer[J].J Clin Oncol,2010,28:1821-1828. 27 路红,季宇,张迎等.多参数磁共振成像在乳腺癌新辅助化疗中的应用研究进展[J].中国肿瘤临床,2021,48(20):1056-1060. 28 Parikh J,Selmi M,Charles-Edwards G,et al.Changes in primary breast cancer heterogeneity may augment midtreatment MR imaging assessment of response to neoadjuvant chemotherapy[J].Radiology,2014,272(1):100-112. 29 曹崑,刘慧,赵博,等.早期增强MRI纹理特征分析对乳腺癌新辅助化疗后病理完全缓解的判断能力[J].中华放射学杂志,2018,52(7):523-527. 30 姚纯,杨志企,杨佳达,等.基于动态增强MRI影像组学评分和激素受体的列线图预测乳腺癌新辅助化疗不敏感的价值[J].国际医学放射学杂志,2022,45(2):130-134. 31 Xiong Q,Zhou X,Liu Z,et al.Multiparametric MRI-based radiomics analysis for prediction of breast cancers insensitive to neoadjuvant chemotherapy[J].Clin Transl Oncol,2020,22(1):50-59. 32 Pesapane F,Rotili A,Botta F,et al.Radiomics of MRI for the prediction of the pathological response to neoadjuvant chemotherapy in breast cancer patients:a single referral centre analysis[J].Cancers(Basel),2021,13(17):4271. 33 Braman NM,Etesami M,Prasanna P,et al.Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI[J].Breast Cancer Res,2017,19(1):57. 34 Braman N,Prasanna P,Whitney J,et al.Association of peritumoral radiomics with tumor biology and pathologic response to preoperative targeted therapy for HER2(ERBB2)-positive breast cancer[J].JAMA Netw Open,2019,2(4):e192561. |