1 Ferlay J,Colombet M,Soerjomataram I,et al.Cancer statistics for the year 2020:an overview[J].Int J Cancer,2021,149(4):778-789. 2 Sharma R.Examination of incidence,mortality and disability-adjusted life years and risk factors of breast cancer in 49 Asian countries,1990-2019:estimates from Global Burden of Disease Study 2019[J].Jpn J Clin Oncol,2021,51(5):826-835. 3 Cady B,Fulton JP.57% decline in Rhode Island invasive breast cancer mortality between 1987 and 2017:mammography predominates in preventing mortality[J].Breast Cancer Res Treat,2020,184(1):135-147. 4 Afshar P,Mohammadi A,Plataniotis KN,et al.From handcrafted to deep-learning-based cancer radiomics:challenges and opportunities[J].IEEE Signal Processing Magazine,2019,36(4):132-160. 5 D′Orsi CJ,Sickles EA,Mendelson EB,et al.ACR BI-RADS atlas,breast imaging reporting and data system.5th ed[M]. Reston,Va:American College of Radiology,2013. 6 Wang Y,Ikeda DM,Narasimhan B,et al.Estrogen receptor-negative invasive breast cancer:imaging features of tumors with and without human epidermal growth factor receptor type 2 overexpression[J].Radiology,2008,246(2):367-375. 7 邱永康,陈钊,杨琦,等.甲状腺影像检查的人工智能应用进展[J].中国医学影像学杂志,2022,30(7):747-752. 8 Ribli D,Horváth A,Unger Z,et al.Detecting and classifying lesions in mammograms with deep learning[J].Sci Rep,2018,8(1):4165-4172. 9 Khan HN,Shahid AR,Raza B,et al.Multi-view feature fusion based four views model for mammogram classification using convolutional neural network[J].IEEE Access,2019,7:165724-165733. 10 白茹,余慧,安建成.基于改进DenseNet的乳腺钼靶肿块分类方法[J].计算机工程与应用,2022,58(15):270-277. 11 Zeiser FA,Da Costa CA,Zonta T,et al.Segmentation of masses on mammograms using data augmentation and deep learning[J].Digit Imaging,2020,33(4):858-868. 12 万宏燕,徐井旭,杨瑜,等.基于X线摄影影像组学特征鉴别乳腺良恶性肿块的价值[J].医学影像学杂志,2023,33(5):773-776. 13 金昱地,刘胜春.人工智能在乳腺癌诊断治疗中的应用及未来发展方向[J].世界最新医学信息文摘,2023,23(41):91-96. |