1 State Key Laboratory for Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249
2 Basin and Reservoir Research Center, China University of Petroleum(Beijing), Beijing 102249
Facies, potential and source rocks of petroliferous basins are three factors controlling the traps petroliferous property, they are necessary for reservoirs to trap hydrocarbons. Under the condition that they all met their own critical conditions of controlling reservoirs, the larger the facies-potential-sources coupling index, the higher the petroliferous property of the trap. Based on the mechanism for hydrocarbon accurnulation controlled by facies-potential-source coupling, physical simulation experiment was conducted. Studies showed that sources controlled the material origin of hydrocarbons, facies controlled the pore space to store hydrocarbons, and potential was the driving force for hydrocarbons to accumulate in traps. Only when they combined with each other, could hydrocarbon reservoirs form in basins. Furthermore, the larger the grain size difference between cap rocks outside the trap and the reservoirs inside the trap was, the easier it was for hydrocarbons to migrate from wall rocks of fine grains and low porosity to reservoir of coarse grains with high porosity. Meanwhile, its critical condition was that the ratio of grain size of reservoir to that of wall rocks was larger than 2 times, or the outside capillary force was more than 2 times larger than that inside the traps. At the same time, high petroliferous property of source rocks was better for hydrocarbons to accumulate in the traps|with hydrocarbon saturation of outer source rock reached or more than 5% as the critical condition.
About author: Pang Xiongqi, born in 1961, is a professor in China University of Petroleum(Beijing). Now he is mainly engaged in hydrocarbon accumulation mechanisms and resource evaluation. E-mail: pangxq@cup.edu.cn.
Cite this article:
Pang Xiongqi,Chen Dongxia,Zhang Jun et al. Physical simulation experimental study on mechanism for hydrocarbon accumulation controlled by facies-potential-source coupling|[J]. JOPC, 2013, 15(5): 575-592.
Pang Xiongqi,Chen Dongxia,Zhang Jun et al. Physical simulation experimental study on mechanism for hydrocarbon accumulation controlled by facies-potential-source coupling|[J]. JOPC, 2013, 15(5): 575-592.
陈冬霞, 庞雄奇, 姜振学, 等. 2004. 砂岩透镜体成藏门限物理模拟实验[J]. 科学技术与工程, 4(6): 458-461. 陈章明, 姜振学, 郭水生, 等. 1995. 泥质岩盖层封闭性综合评价及其在琼东南盆地的应用[J]. 中国海相油气(地质), 9(1): 1-6. 池英柳, 赵文智. 2002. 渤海湾盆地油气富集带的形成与分布[J]. 中国石油勘探, 5(1): 9-16. 冯有良, 周海民, 李思田, 等. 2004. 陆相断陷盆地层序类型与构造特征[J]. 地质论评, 50(1): 43-49. 郝芳. 2005. 超压盆地生烃作用动力学与油气成藏机理[M]. 北京:科学出版社, 1-414. 胡朝元. 1982. 生油区控制油气田分布:中国东部陆相盆地进行区域勘探的有效理论[J]. 石油学报, 3(2): 24-27. 李春光. 1995. 山东东营、潍北盆地气藏分布规律的探讨[J]. 天然气工业, 15(4): 10-13. 李德生. 1980. 渤海湾含油气盆地的地质构造特征[J]. 石油学报, 1(1): 6-20. 李明诚. 1994. 石油与天然气运移(第三版)[M]. 北京:石油工业出版社, 1-350. 李明诚, 单秀琴, 马成华. 2007. 砂岩透镜体成藏的动力学机制[J]. 石油和天然气地质, 28(2): 209-215. 李丕龙, 庞雄奇. 2004. 陆相断陷盆地隐蔽油气藏形成:以济阳坳陷为例[M]. 北京:石油工业出版社, 1-426. 楼章华, 高瑞祺, 蔡希源. 1997. 论松辽盆地地下水动力场演化与油气运移、聚集[J]. 沉积学报, 15(4): 115-120. 楼章华, 金爱民, 田炜卓. 2005. 论陆相含油气沉积盆地地下水动力场与油气运移、聚集[J]. 地质科学, 40(3): 305-318. 罗晓容. 2004. 断裂成因他源高压及其地质特征[J]. 地质学报, 78(5): 641-647. 庞雄奇, 陈冬霞, 李丕龙, 等. 2003. 砂岩透镜体成藏门限及其控油气作用机理[J]. 石油学报, 24(3): 38-41. 庞雄奇, 李丕龙, 张善文, 等. 2007. 陆相断陷盆地相—势耦合控藏作用及其基本模式[J]. 石油与天然气地质, 28(5): 641-652. 庞雄奇, 李丕龙, 陈冬霞, 等. 2011. 陆相断陷盆地相控油气特征及其基本模式[J]. 古地理学报, 13(1): 55-74. 庞雄奇, 周新源, 姜振学, 等. 2012. 叠合盆地油气藏形成、演化与预测评价[J]. 地质学报, 86(1): 1-103. 田世澄, 陈永进, 张兴国. 2001. 论成藏动力系统中的流体动力学机制[J]. 地学前缘, 8(4): 329-334. 王永诗. 2007. 油气成藏“相—势”耦合作用探讨:以渤海湾盆地济阳坳陷为例[J]. 石油实验地质, 19(5): 472-476. 王震亮, 陈荷立. 2002. 试论古水动力演化的旋回性与油气的多期次运聚[J]. 沉积学报, 20(2): 339-344. 解习农, 刘晓峰. 2000. 超压盆地流体动力系统与油气运聚关系[J]. 矿物岩石地球化学通报, 19(2): 103-108. 杨克明, 庞雄奇. 2012. 致密砂岩气藏形成机制与预测方法:以川西坳陷为例[M]. 北京:科学出版社, 1-312. 叶加仁, 顾惠荣. 2001. 势能理论与油气勘探[J]. 海洋石油, (4): 6-9. 赵文智, 邹才能, 谷志东. 2007. 砂岩透镜体油气成藏机理初探[J]. 石油勘探与开发, 34(3): 273-284. 查明. 1997. 断陷盆地油气二次运移与聚集[M]. 北京:地质出版社, 1-125. 邹才能, 陶士振, 薛叔浩. 2005. “相控论”的内涵及其勘探意义[J]. 石油勘探与开发, 32(6): 7-12. Bachu S. 1995. Synthesis and model of formation-water flow, Alberta basin, Canada[J]. AAPG Bulletin, 79(8): 1159-1178. Berg R R. 1975. Capillary pressures in stratigraphic traps[J]. AAPG Bulletin, 59(5):939-956. Chen D X, Pang X Q, Kuang J, et al. 2010. Control of facies and potential on Jurassic hydrocarbon accumulation and prediction of favorable targets in the hinterland region of the Junggar Basin[J]. Acta Geologica Sinica, 84(5): 1256-1272. England W A, Mackenzie A S, Mann D M, et al. 1987. The movement and entrapment of petroleum fluids in the surface[J]. Journal of the Geological Society, 144(2): 327-347. Garven G. 1989. A hydrogeologic model for the formation of the giant oil sands deposits of western Canada sedimentary basin[J]. American Journal of Science, 289(2): 105-166. Hindle A D. 1997. Petroleum migration pathways and charge concentration:A three dimensional model[J]. AAPG Bulletin, 81(9): 1451-1481. Hunt J M. 1990. Generation and migration of petroleum from abnormally pressured fluid compartments[J]. AAPG Bulletin, 74(1): 1-12. Law B E, Dickison W W. 1985. Conceptual model for origin of abnormally pressured gas accumulation in low-permeability reservoirs[J]. AAPG Bulletin, 69(8): 1295-1304. Magara K. 1978. Compaction and Fluid Migration:Practical Petroleum Geology[M]. Amsterdam, Elsevier Scientific Publishing Company, 1-319. Magoon L B, Dow W G. 1994. The Petroleum System-from Source to Trap[M]. Tulsa, Oklahoma, AAPG Memoir 60:1-620. Pang X Q, Chen D X, Liu K Y, et al. 2012a. The concept of fluid potential and its practical application to petroleum exploration[J]. Energy Exploration& Exploitation, 30(6):889-914. Pang X Q, Yu Q H, Guan X Y, et al. 2012b. Evolution and movement of source kitchens and their control of oil and gas in the Tarim Cratonic Basin, China[J]. Energy Exploration & Exploitation, 30(2): 239-272. Pang X Q, Liu K Y, Ma Z Z, et al. 2012c. Dynamic field division of hydrocarbon migration, accumulation and hydrocarbon enrichment rules in sedimentary basins[J]. Acta Geologica Sinica(English Edition), 86(6): 1559-1592. Roberts S J, Nunn J A. 1996. Expulsion of abnormally pressured fluid along faults[J]. Journal of Geophysical Research, 101(B12): 28231-28252. Stainforth J G, Reinders J E A. 1990. Primary migration of hydrocarbons by diffusion through organic matter networks, and its effect on oil and gas generation[J]. Organic Geochemistry, 16(1): 61-74. Toth J. 1978. Gravity-induced cross-formational flow of formation fluids, red earth region, Alberta, Canada:Analysis, patterns, and evolution[J]. Water Resources Research, 14(5): 805-843.