Shallow-water onlap sedimentary mode of black organic-rich shale in the Longmaxi Formation,Upper Yangtze area
CHEN Lei1,2, TAN Xiucheng1,2,3, ZHENG Jian4, CHEN Xin1,2, YANG Yang4, XIONG Min1,2, WANG Gaoxiang1,5, JI Yubing6
1 Natural Gas Geology Key Laboratory of Sichuan Province,Southwest Petroleum University,Chengdu 610500, China; 2 Research Branch of Southwest Petroleum University,Key Laboratory of Carbonate Reservoirs,CNPC,Chengdu 610500, China; 3 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,China; 4 Sichuan Changning Gas Development Co.,Ltd.,Chengdu 610051,China; 5 Shale Gas Research Institute,PetroChina Southwest Oil and Gas Company,Chengdu 610056,China; 6 PetroChina Zhejiang Oilfield Company,Hangzhou 310023,China
Abstract Fine-grained sedimentation determines the material basis of shale and plays an important role in the formation of high-quality shale. Based on the comprehensive analysis of drilling cores,outcrops,thin sections and seismic data,the sedimentary mode of the black shale from the Longmaxi Formation in the Upper Yangtze area was studied. The results show that(1)siltstone interbedded with shale,bioturbation,cross bedding,wavy laminae,graded laminae,orientation of mud gravel and basal erosion occurred in the black organic-rich shale of the Longmaxi Formation,which reveals obvious shallow water sedimentary characteristics. (2)The reverse graded deposition sequence of shale-silty shale-siltstone under wave action is developed in the black shale,reflecting that wave action has an important influence on the formation of black shale in the Longmaxi Formation. (3)The storm has a certain impact on the formation of black shale in the Longmaxi Formation,which shows the normal graded deposition sequence of siltstone to black shale formed on the irregular erosion surface. (4)A comparison of the seismic profile and regional stratigraphic well profile shows that the black shale of the Longmaxi Formation presents obvious onlap to the margin of the paleo-uplift with the rise in sea level. These results reflect that the black shale of the Longmaxi Formation in the Upper Yangtze area formed in limited shallow water,which is vulnerable to waves and storms. The continuous onlap of shale occurred with the rise in sea level. The shallow-water onlap sedimentary mode of the organic-rich shale in the Longmaxi Formation has significant guidance for the exploration of organic-rich shale in the Upper Yangtze area.
Fund:Financially supported by the National Natural Science Foundation of China(No.41602147)and Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(No.2020CX020000)
About author: CHEN Lei,born in 1985,is an associate professor at Southwest Petroleum University. He is mainly engaged in researches on unconventional petroleum geology and sequence stratigraphy. E-mail: cl211@126.com.
Cite this article:
CHEN Lei,TAN Xiucheng,ZHENG Jian et al. Shallow-water onlap sedimentary mode of black organic-rich shale in the Longmaxi Formation,Upper Yangtze area[J]. JOPC, 2023, 25(3): 614-627.
CHEN Lei,TAN Xiucheng,ZHENG Jian et al. Shallow-water onlap sedimentary mode of black organic-rich shale in the Longmaxi Formation,Upper Yangtze area[J]. JOPC, 2023, 25(3): 614-627.
[1] 陈旭. 1990. 论笔石的深度分带. 古生物学报, 29(5): 507-526. [Chen X. 1990. Graptolite depth zonation. Acta Palaeontologica Sinica, 29(5): 507-526] [2] 陈旭,戎嘉余,周志毅,张元动,詹仁斌,刘建波,樊隽轩. 2001. 上扬子区奥陶—志留纪之交的黔中隆起和宜昌上升. 科学通报, 46(12): 1052-1056. [Chen X,Rong J Y,Zhou Z Y,Zhang Y D,Zhan R B,Liu J B,Fan J X. 2001. The central Guizhou Uplift and Yichang rise at the Ordovician-Silurian transition in the upper Yangtze region. Chinese Science Bulletin, 46(12): 1052-1056] [3] 陈旭,张元动,樊隽轩,成俊峰,李启剑. 2010. 赣南奥陶纪笔石地层序列与广西运动. 中国科学: 地球科学, 40(12): 1621-1631. [Chen X,Zhang Y D,Fan J X,Cheng J F,Li Q J. 2010. Ordovician graptolite-bearing strata in southern Jiangxi with a special reference to the Kwangsian Orogeny. Science China: Earth Sciences, 53: 1602-1610] [4] 陈旭,张元动,樊隽轩,唐兰,孙海清. 2012. 广西运动的进程: 来自生物相和岩相带的证据. 中国科学(地球科学), 42(11): 1617-1626. [Chen X,Zhang Y D,Fan J X,Tang L,Sun H Q. 2012. Onset of the Kwangsian Orogeny as evidenced by biofacies and lithofacies. Scientia Sinica Terrae, 42(11): 1617-1626] [5] 陈旭,樊隽轩,陈清,唐兰,侯旭东. 2014. 论广西运动的阶段性. 中国科学: 地球科学, 44(5): 842-850. [Chen X,Fan J X,Chen Q,Tang L,Hou X D. 2014. Toward a stepwise Kwangsian Orogeny. Scientia Sinica Terrae, 44(5): 842-850] [6] 陈旭,樊隽轩,张元动,王红岩,陈清,王文卉,梁峰,郭伟,赵群,聂海宽,文治东,孙宗元. 2015. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定. 地层学杂志, 39(4): 351-358. [Chen X,Fan J X,Zhang Y D,Wang H Y,Chen Q,Wang W H,Liang F,Guo W,Zhao Q,Nie H K,Wen Z D,Sun Z Y. 2015. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze platform. Journal of Stratigraphy, 39(4): 351-358] [7] 陈旭,樊隽轩,王文卉,王红岩,聂海宽,石学文,文治东,陈冬阳,李文杰. 2017. 黔渝地区志留系龙马溪组黑色笔石页岩的阶段性渐进展布模式. 中国科学: 地球科学, 47(6): 720-732. [Chen X,Fan J X,Wang W H,Wang H Y,Nie H K,Shi X W,Wen Z D,Chen D Y,Li W J. 2017. Stage-progressive distribution pattern of the Lungmachi black graptolitic shales from Guizhou to Chongqing,Central China. Scientia Sinica Terrae, 47(6): 720-732] [8] 郭彤楼. 2016. 中国式页岩气关键地质问题与成藏富集主控因素. 石油勘探与开发, 43(3): 317-326. [Guo T L. 2016. Key geological issues and main controls on accumulation and enrichment of Chinese shale gas. Petroleum Exploration and Development, 43(3): 317-326] [9] 郭彤楼,张汉荣. 2014. 四川盆地焦石坝页岩气田形成与富集高产模式. 石油勘探与开发, 41(1): 28-36. [Guo T L,Zhang H R,2014. Formation and enrichment mode of Jiaoshiba shale gas field,Sichuan Basin. Petroleum Exploration and Development, 41(1): 28-36] [10] 郭伟,李熙哲,张晓伟,兰朝利,梁萍萍,沈伟军,郑马嘉. 2022. 深水陆棚富有机质页岩沉积微相—微地貌及其对储层的控制作用: 以四川盆地南部五峰组—龙马溪组页岩为例. 石油学报, 43(8): 1089-1106. [Guo W,Li X Z,Zhang X W,Lan C L,Liang P P,Shen W J,Zheng M J. 2022. Sedimentary microfacies and microrelief of organic-rich shale in deep-water shelf and their control on reservoirs: a case study of shale from Wufeng-Longmaxi formations in southern Sichuan Basin. Acta Petrolei Sinica, 43(8): 1089-1106] [11] 何卫红,汪啸风,卜建军. 2002. 晚奥陶世五峰期扬子海盆海平面变化旋回与古水体深度. 沉积学报, 20(3): 367-375. [He W H,Wang X F,Bu J J. 2002. The eustatic cycles and the depth of water mass of the latest Ordovician Wufengian in the Yangtze Basin. Acta Sedimentologica Sinica, 20(3): 367-375] [12] 何卫红,汪啸风,卜建军. 2003. 扬子海盆中部晚奥陶世五峰期海平面变化. 地球学报, 24(1): 55-60. [He W H,Wang X F,Bu J J. 2003. Sea-level change of the central Yangtse Sea Basin in the Late Ordovician Wufengian Period. Acta Geoscientia Sinica, 24(1): 55-60] [13] 何治亮,聂海宽,张钰莹. 2016. 四川盆地及其周缘奥陶系五峰组—志留系龙马溪组页岩气富集主控因素分析. 地学前缘, 23(2): 8-17. [He Z L,Nie H K,Zhang Y Y. 2016. The main factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its adjacent areas. Earth Science Frontiers, 23(2): 8-17] [14] 金值民,谭秀成,唐浩,沈安江,乔占峰,郑剑锋,李飞,张世轩,陈雷,周成刚. 2020. 浅水超覆沉积富有机质细粒沉积物沉积环境与岩石学特征: 以塔里木盆地西北部寒武系玉尔吐斯组为例. 石油勘探与开发, 47(3): 476-489. [Jin Z M,Tan X C,Tang H,Shen A J,Qiao Z F,Zheng J F,Li F,Zhang S X,Chen L,Zhou C G. 2020. Sedimentary environment and petrological features of organic-rich fine sediments in shallow water overlapping deposits: a case study of Cambrian Yuertus Formation in northwestern Tarim Basin,NW China. Petroleum Exploration and Development, 47(3): 476-489] [15] 梁峰,张琴,熊小林,崔会英,梁萍萍,马超. 2019. 四川盆地及周缘五峰组—龙马溪组富有机质页岩沉积演化模式. 沉积学报, 37(4): 847-857. [Liang F,Zhang Q,Xiong X L,Cui H Y,Liang P P,Ma C. 2019. Sedimentary evolution model of Upper Ordovician Wufeng-Lower Silurian Longmaxi organic-rich shale in the Sichuan Basin and its surrounding area. Acta Sedimentologica Sinica, 37(4): 847-857] [16] 梁狄刚,郭彤楼,边立曾,陈建平,赵喆. 2009. 中国南方海相生烃成藏研究的若干新进展(三): 南方四套区域性海相烃源岩的沉积相及发育的控制因素. 海相油气地质, 14(2): 1-19. [Liang D G,Guo T L,Bian L C,Chen J P,Zhao Z. 2009. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions,Southern China(Part 3): controlling factors on the sedimentary facies and development of Paleozoic marine source rocks. Marine Origin Petroleum Geology, 14(2): 1-19] [17] 梁峰,王红岩,拜文华,郭伟,赵群,孙莎莎,张琴,武瑾,马超,雷治安. 2017. 川南地区五峰组—龙马溪组页岩笔石带对比及沉积特征. 天然气工业, 37(7): 20-26. [Liang F,Wang H Y,Bai W H,Guo W,Zhao Q,Sun S S,Zhang Q,Wu J,Ma C,Lei Z A. 2017. Graptolite correlation and sedimentary characteristics of Wufeng-Longmaxi shale in southern Sichuan Basin. Natural Gas Industry, 37(7): 20-26] [18] 马永生,陈洪德,王国力. 2009. 中国南方层序地层与古地理. 北京: 科学出版社,280-283. [Ma Y S,Chen H D,Wang G L. 2009. Sequence Stratigraphy and Paleogeography of South China. Beijing: Science Press,280-283] [19] 牟传龙,王秀平,王启宇,周恳恳,梁薇,葛祥英,陈小炜. 2016. 川南及邻区下志留统龙马溪组下段沉积相与页岩气地质条件的关系. 古地理学报, 18(3): 457-472. [Mou C L,Wang X P,Wang Q Y,Zhou K K,Liang W,Ge X Y,Chen X W. 2016. Relationship between sedimentary facies and shale gas geological conditions of the Lower Silurian Longmaxi Formation in southern Sichuan Basin and its adjacent areas. Journal of Palaeogeography(Chinese Edition), 18(3): 457-472] [20] 聂海宽,金之钧,马鑫,刘忠宝,林拓,杨振恒. 2017. 四川盆地及邻区上奥陶统五峰组—下志留统龙马溪组底部笔石带及沉积特征. 石油学报, 38(2): 160-174. [Nie H K,Jin Z J,Ma X,Liu Z B,Lin T,Yang Z H. 2017. Graptolites zone and sedimentary characteristics of Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Sichuan Basin and its adjacent areas. Acta Petrolei Sinica, 38(2): 160-174] [21] 邱振,江增光,董大忠,施振生,卢斌,谈昕,周杰,雷丹凤,梁萍萍,韦恒叶. 2017. 巫溪地区五峰组—龙马溪组页岩有机质沉积模式. 中国矿业大学学报, 46(5): 1134-1143. [Qiu Z,Jiang Z G,Dong D Z,Shi Z S,Lu B,Tan X,Zhou J,Lei D F,Liang P P,Wei H Y. 2017. Organic matter enrichment model of the shale in Wufeng-Longmachi formation of Wuxi area. Journal of China University of Mining & Technology, 46(5): 1134-1143] [22] 邱振,邹才能. 2020. 非常规油气沉积学: 内涵与展望. 沉积学报, 38(1): 1-29. [Qiu Z,Zou C N. 2020. Unconventional petroleum sedimentology: connotation and prospect. Acta Sedimentologica Sinica, 38(1): 1-29] [23] 戎嘉余,詹仁斌. 1999. 华南奥陶、志留纪腕足动物群的更替兼论奥陶纪末冰川活动的影响. 现代地质, 13(4): 390-394. [Rong J Y,Zhan R B. 1999. Ordovician-Silurian Brachiopod fauna turnover in South China. Geoscience, 13(4): 390-394] [24] 施振生,王红岩,林长木,孙莎莎,金惠,郝翠果,陈胜,张蓉. 2020. 威远—自贡地区五峰期—龙马溪期古地形及其对页岩储层品质的控制. 地层学杂志, 44(2): 163-173. [Shi Z S,Wang H Y,Lin C M,Sun S S,Jin H,Hao C G,Chen S,Zhang R. 2020. Paleotopography of Weiyuan-Zigong area in Wufengian-Lungmachian stages(Ordovician-Silurian transition)and its effect on the quality of shale gas reservoir. Journal of Stratigraphy, 44(2): 163-173] [25] 孙莎莎,芮昀,董大忠,施振生,拜文华,马超,张磊夫,武瑾,昌燕. 2018. 中、上扬子地区晚奥陶世—早志留世古地理演化及页岩沉积模式. 石油与天然气地质, 39(6): 1087-1106. [Sun S S,Rui Y,Dong D Z,Shi Z S,Bai W H,Ma C,Zhang L F,Wu J,Chang Y. 2018. Paleogeographic evolution of the Late Ordovician-Early Silurian in Upper and Middle Yangtze regions and depositional model of shale. Oil & Gas Geology, 39(6): 1087-1106] [26] 王社教,王兰生,黄金亮,李新景,李登华. 2009. 上扬子区志留系页岩气成藏条件. 天然气工业, 29(5): 45-50. [Wang L S,Huang J L,Li X J,Li D H. 2009. Accumulation conditions of shale gas reservoirs in Silurian of the Upper Yangtze region. Natural Gas Industry, 29(5): 45-50] [27] 王同,张克银,熊亮,史洪亮,董晓霞,魏力民,温真桃,欧阳嘉穗,李斌,王浩宇. 2018. 四川自贡地区五峰组—龙马溪组下段古地貌刻画及其油气意义. 石油实验地质, 40(6): 764-770. [Wang T,Zhang K Y,Xiong L,Shi H L,Dong X X,Wei L M,Wen Z T,Ouyang J S,Li B,Wang H Y. 2018. Paleogeomorphology restoration of Wufeng Formation-Lower Member of Longmaxi Formation in Zigong area of Sichuan Province and its oil and gas significance. Petroleum Geology & Experiment, 40(6): 764-770] [28] 王玉满,董大忠,李新景,黄金亮,王淑芳,吴伟. 2015. 四川盆地及其周缘下志留统龙马溪组层序与沉积特征. 天然气工业, 35(3): 12-21. [Wang Y M,Dong D Z,Li X J,Huang J L,Wang S F,Wu W. 2015. Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in the Sichuan Basin and its peripheral areas. Natural Gas Industry, 35(3): 12-21] [29] 王玉满,李新景,董大忠,张晨晨,王淑芳. 2017. 上扬子地区五峰组—龙马溪组优质页岩沉积主控因素. 天然气工业, 37(4): 9-20. [Wang Y M,Li X J,Dong D Z,Zhang C C,Wang S F. 2017. Main factors controlling the sedimentation of high-quality shale in Wufeng-Longmaxi Fm,Upper Yangtze region. Natural Gas Industry, 37(4): 9-20] [30] 严德天,王清晨,陈代钊,汪建国,王卓卓. 2008. 扬子及周缘地区上奥陶统—下志留统烃源岩发育环境及其控制因素. 地质学报, 82(3): 321-327. [Yan D T,Wang Q C,Chen D Z,Wang J G,Wang Z Z. 2008. Sedimentary environment and development controls of the hydrocarbon sources beds: the Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation in the Yangtze area. Acta Geologica Sinica, 82(3): 321-327] [31] 严德天,陈代钊,王清晨,汪建国. 2009. 扬子地区奥陶系—志留系界线附近地球化学研究. 中国科学(D辑: 地球科学), 39(3): 285-299. [Yan D T,Chen D Z,Wang Q C,Wang J G. 2009. Geochemical studies near the Ordovician-Silurian boundary in the Yangtze Region. Science in China(Series D), 39(3): 285-299] [32] 张海全,许效松,余谦,阎剑飞,周恳恳,门玉澎. 2010. 扬子板块西北缘晚奥陶—早志留世岩相古地理演化与烃源岩的关系. 石油天然气学报, 32(2): 43-47. [Zhang H Q,Xu X S,Yu Q,Yan J F,Zhou K K,Men Y P. 2010. Relationship between lithofacies paleogeographic evolution and source rocks of the Late Ordovician-Early Silurian in northwestern Yangtze Plate. Journal of Oil and Gas Technology, 32(2): 43-47] [33] 张海全,许效松,刘伟,门玉澎. 2013. 中上扬子地区晚奥陶世—早志留世岩相古地理演化与黑色页岩的关系. 沉积与特提斯地质, 33(2): 17-24. [Zhang H Q,Xu X S,Liu W,Men Y P. 2013. Late Ordovician-Early Silurian sedimentary facies and palaeogeographic evolution and its bearings on the black shales in the Middle-Upper Yangtze area. Sedimentary Geology and Tethyan Geology, 33(2): 17-24] [34] 赵明胜,王约. 2018. 上扬子海南缘晚奥陶世赫南特期沉积相特征及海平面变化. 地球学报, 39(2): 189-200. [Zhao M S,Wang Y. 2018. Sedimentary facies features and sea-level fluctuation during the Upper Ordovician Hirnantian Period on the southern margin of the Upper Yangtze Sea. Acta Geoscientica Sinica, 39(2): 189-200] [35] 周恳恳,牟传龙,许效松,葛祥英,梁薇. 2014. 华南中上扬子早志留世古地理与生储盖层分布. 石油勘探与开发, 41(5): 623-632. [Zhou K K,Mou C L,Xu X S,Ge X Y,Liang W. 2014. Early Silurian paleogeography and source-reservoir-cap rocks of the Middle-Upper Yangtze region in South China. Petroleum Exploration and Development, 41(5): 623-632] [36] 周名魁,王汝植,李志明,袁鄂荣,何原相,杨家骤,胡昌铭,熊代全,楼雄英. 1993. 中国南方奥陶—志留纪岩相古地理与成矿作用. 北京: 地质出版社. [Zhou M K,Wang R Z,Li Z M,Yuan E R,He Y X,Yang J Z,Hu C M,Xiong D Q,Lou X Y. 1993. Ordovician and Silurian Lithofacies Paleogeography and Mineralization in South China. Beijing: Geological Publishing House] [37] 邹才能,董大忠,王玉满,李新景,黄金亮,王淑芳,管全中,张晨晨,王红岩,刘洪林,拜文华,梁峰,吝文,赵群,刘德勋,杨智,梁萍萍,孙莎莎,邱振. 2015. 中国页岩气特征、挑战及前景(一). 石油勘探与开发, 42(6): 689-701. [Zou C N,Dong D Z,Wang Y M,Li X J,Huang J L,Wang S F,Guan Q Z,Zhang C C,Wang H Y,Liu H L,Bai W H,Liang F,Lin W,Zhao Q,Liu D X,Yang Z,Liang P P,Sun S S,Qiu Z. 2015. Shale gas in China: characteristics,challenges and prospects(Ⅰ). Petroleum Exploration and Development, 42(6): 689-701] [38] 邹才能,杨智,张国生,陶士振,朱如凯,袁选俊,侯连华,董大忠,郭秋麟,宋岩,冉启全,吴松涛,白斌,王岚,王志平,杨正明,才博. 2019. 非常规油气地质学建立及实践. 地质学报, 93(1): 12-19,21-23. [Zou C N,Yang Z,Zhang G S,Tao S Z,Zhu R K,Yuan X J,Hou L H,Dong D Z,Guo Q L,Song Y, Ran Q Q, Wu S T, Bai B, Wang L, Wang Z P, Yang Z M, Cai B. 2019. Establishment and practice of unconventional oil and gas geology. Acta Geologica Sinica, 93(1): 12-19,21-23] [39] 邹才能,赵群,丛连铸,王红岩,施振生,武瑾,潘松圻. 2021. 中国页岩气开发进展、潜力及前景. 天然气工业, 41(1): 1-14. [Zou C N,Zhao Q,Cong L Z,Wang H Y,Shi Z S,Wu J,Pan S Q. 2021. Development progress,potential and prospect of shale gas in China. Natural Gas Industry, 41(1): 1-14] [40] 邹才能,赵群,王红岩,熊伟,董大忠,于荣泽. 2022. 中国海相页岩气主要特征及勘探开发主体理论与技术. 天然气工业, 42(8): 1-13. [Zou C N,Zhao Q,Wang H Y,Xiong W,Dong D Z,Yu R Z. 2022. The main characteristics of marine shale gas and the theory & technology of exploration and development in China. Natural Gas Industry, 42(8): 1-13] [41] Alkhafaji M W,Aljubouri Z A,Aldobouni I A. 2015. Depositional environment of the Lower Silurian Akkas hot shales in the western desert of Iraq: results from an organic geochemical study. Marine and Petroleum Geology, 64: 294-303. [42] Birgenheier L P,Horton B,McCauley A D,Johnson C L,Kennedy A,Fielding C. 2017. A depositional model for offshore deposits of the lower Blue Gate Member,Mancos Shale,Uinta Basin,Utah,USA. Sedimentology, 64(5): 1402-1438. [43] Conant L C,Swanson V E. 1961. Chattanooga shale and related rocks of central Tennessee and nearby areas. U.S. Geological Survey Professional Paper, 357: 91. [44] Crusius J,Calvert S,Pedersen T,Sage D. 1996. Rhenium and molybdenum enrichments in sediments as indicators of oxic,suboxic and sulfidic conditions of deposition. Earth and Planetary Science Letters, 145: 65-78. [45] Feng Z Q,Hao F,Tian J Q,Zhou S W,Dong D Z,Huang S P. 2022. Shale gas geochemistry in the Sichuan Basin,China. Earth-Science Reviews, 232: 104141. [46] Grabau A W,O'Connell M. 1917. Were the graptolite shales,as a rule,deep or shallow water deposits? Geological Society of America Bulletin, 28: 959-964. [47] Gustafson L B,Williams N. 1981. Sediment-hosted stratiform deposits of copper,lead,and zinc. Economic Geology, 9: 139-178. [48] Hambrey M J. 1985. The Late Ordovician-Early Silurian glacial period. Palaeogeography,Palaeoclimatology,Palaeoecology, 51(1-4): 273-289. [49] Han Y Y,Ran B,Liu S G,Li Z W,Ye Y H,Sun W,Yang D,Wang S Y. 2021. Main controlling factors of organic-matter enrichment in the Ordovician-Silurian marine organic-rich mudrock in the Yangtze Block,South China. Marine and Petroleum Geology, 127: 104959. [50] Ilgen A G,Heath J E,Akkutlu I Y,Bryndzia L T,Cole D R,Kharaka Y K,Kneafsey T J,Milliken K L,Pyrak-Nolte L J,Suarez-Rivera R. 2017. Shales at all scales: exploring coupled processes in mudrocks. Earth-Science Reviews, 166: 132-152. [51] Jacobs L,Emerson S,Skei J. 1985. Partitioning and transport of metals across the O2H2S interface in a permanently anoxic basin: Framvaren Fjord,Norway. Geochimica et Cosmochimica Acta, 49(6): 1433-1444. [52] Jacobs L,Emerson S,Huested S S. 1987. Trace metal geochemistry in the Cariaco Trench. Deep-sea Research, 34(5-6): 965-981. [53] Johnson M E,Kaljo D L,Rong J Y. 1991. Silurian eustasy. Special papers in Palaeontology, 44: 145-163. [54] Lazar O R,Bohacs K M,Macquaker J H,Schieber J,Demko T M. 2015. Capturing key attributes of fine-grained sedimentary rocks in outcrops,cores,and thin sections: nomenclature and description guidelines. Journal of Sedimentary Research, 85(3): 230-246. [55] Leggett J K,McKerrow W S,Cocks L R M,Rickards R B. 1981. Periodicity in the Early Paleozoic marine realm. Journal of Geological Society, 138(2): 167-176. [56] Long D G F. 2007. Tempestite frequency curves: a key to Late Ordovician and Early Silurian subsidence,sea-level change,and orbital forcing in the Anticosti foreland basin,Quebec,Canada. Canadian Journal of Earth Sciences, 44(3): 413-431. [57] Loydell D K. 1998. Early Silurian sea-level changes. Geological Magazine, 135(4): 447-471. [58] Loydell D K,Butcher A,Frýda J. 2013. The middle Rhuddanian(Lower Silurian)‘hot' shale of North Africa and Arabia: an atypical hydrocarbon source rock. Palaeogeography,Palaeoclimatology,Palaeoecology, 386: 233-256. [59] Lüning S,Craig J,Loydell D K,Štorch P,Fitches B. 2000. Lower Silurian‘hot shales' in North Africa and Arabia: regional distribution and depositional model. Earth-Science Reviews, 49(1): 121-200. [60] McCollum L B. 1988. A shallow epeiric sea interpretation for an offshore Middle Devonian black shale facies in eastern North America. In: McMillan N J et al.(eds). Devonian of the World: proceedings of the 2nd International Symposium on the Devonian System. Canadian Society of Petroleum Geologists Memoir, 14(2): 347-355. [61] Munnecke A,Calner M,Harper D A T,Servais T. 2010. Ordovician and Silurian sea-water chemistry,sea level,and climate: a synopsis. Palaeogeography,Palaeoclimatology,Palaeoecology, 296(3-4): 389-413. [62] Rong J Y,Zhan R B,Xu H G,Huang B,Yu G H. 2010. Expansion of the Cathaysian Oldland through the Ordovician-Silurian transition: emerging evidence and possible dynamics. Science China: Earth Sciences, 53(1): 1-17. [63] Ross C A, Ross J R P. 1996. Silurian sea-level fluctuations. In: Witzke B J,Ludvigson G A,Day J(eds). Paleozoic Sequence Stratigraphy: Views from the North American Craton. Geological Society of America,187-192. [64] Schieber J. 1998. Sedimentary features indicating erosion,condensation,and hiatuses in the Chattanooga Shale of central Tennessee: relevance for sedimentary and stratigraphic evolution. In: Schieber J et al.(eds). Shales and Mudstones,Volume 1: Basin Studies,Sedimentology,and Paleontology. Stuttgart: Schweizerbart'sche Verlagsbuchhandlung,187-215. [65] Schieber J,Southard J,Thaisen K. 2007. Accretion of mudstone beds from migrating floccule ripples. Science, 318(5857): 1760-1763. [66] Sheehan P M. 1973. The relation of Late Ordovician glaciation to the Ordovician-Silurian changeover in North American brachiopod faunas. Lethaia, 6(2): 147-154. [67] Sen S,Kozlu H. 2020. Impact of maturity on producible shale oil volumes in the Silurian(Llandovery)hot shales of the northern Arabian plate,southeastern Turkey. AAPG Bulletin, 104(3): 507-524. [68] Smith L B,Schieber J,Wilson R D. 2019. Shallow-water onlap model for the deposition of Devonian black shales in New York,USA. Geology, 47(3): 279-283. [69] Vine J D,Tourtelot E B. 1970. Geochemistry of black shale deposits: a summary report. Economic Geology, 65(3): 253-272. [70] Wilson R D,Schieber J. 2015. Sedimentary facies and depositional environment of the Middle Devonian Geneseo Formation of New York,U.S.A. Journal of Sedimentary Research, 85(11): 1393-1415. [71] Yan D T,Chen D Z,Wang Q C,Wang J G,Wang Z Z. 2009. Carbon and sulfur isotopic anomalies across the Ordovician-Silurian boundary on the Yangtze Platform,South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 274(1-2): 32-39.