Journal of Practical Oncology ›› 2023, Vol. 37 ›› Issue (2): 185-189.doi: 10.11904/j.issn.1002-3070.2023.02.017
• Review • Previous Articles Next Articles
WEN Shichao, WANG Jingxuan
Received:
2022-11-03
Revised:
2023-03-07
Published:
2023-05-30
CLC Number:
WEN Shichao, WANG Jingxuan. Research status of copper-dependent cell death and copper in breast cancer[J]. Journal of Practical Oncology, 2023, 37(2): 185-189.
1 Guo H,Wang Y,Cui H,et al.Copper induces spleen damage through modulation of oxidative stress,apoptosis,DNA damage,and inflammation[J].Biol Trace Elem Res,2022,200(2):669-677. 2 Zischka H,Einer C.Mitochondrial copper homeostasis and its derailment in Wilson disease[J].Int J Biochem Cell Biol,2018,102:71-75. 3 Tsvetkov P,Coy S,Petrova B,et al.Copper induces cell death by targeting lipoylated TCA cycle proteins[J].Science,2022,375(6586):1254-1261. 4 Sung H,Ferlay J,Siegel RL,et al.Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2021,71(3):209-249. 5 Cao B,Lei YT,Xue H,et al.Changes in the serum concentrations of essential trace metals in patients with benign and malignant breast cancers[J].Biol Trace Elem Res,2022,200(8):3537-3544. 6 Festa RA,Thiele DJ.Copper:an essential metal in biology[J].Curr Biol,2011,21(21):R877-883. 7 Lin C,Zhang Z,Wang T,et al.Copper uptake by DMT1:a compensatory mechanism for CTR1 deficiency in human umbilical vein endothelial cells[J].Metallomics,2015,7(8):1285-1289. 8 Chen J,Jiang Y,Shi H,et al.The molecular mechanisms of copper metabolism and its roles in human diseases[J].Pflugers Arch,2020,472(10):1415-1429. 9 Lee JY,Kim YH,Kim TW,et al.New novel mutation of the ATP7B gene in a family with Wilson disease[J].J Neurol Sci,2012,313(1-2):129-131. 10 Jiang X,Stockwell BR,Conrad M.Ferroptosis:mechanisms,biology and role in disease[J].Nat Rev Mol Cell Biol,2021,22(4):266-282. 11 Zheng P,Zhou C,Lu L,et al.Elesclomol:a copper ionophore targeting mitochondrial metabolism for cancer therapy[J].J Exp Clin Cancer Res,2022,41(1):271. 12 Nagai M,Vo NH,Shin Ogawa L,et al.The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells[J].Free Radic Biol Med,2012,52(10):2142-2150. 13 Yang L,Zhang Y,Wang Y,et al.Ferredoxin 1 is a cuproptosis-key gene responsible for tumor immunity and drug sensitivity:a pan-cancer analysis[J].Front Pharmacol,2022,13:938134. 14 Tsvetkov P,Detappe A,Cai K,et al.Mitochondrial metabolism promotes adaptation to proteotoxic stress published correction appears in Nat Chem Biol[J].Nat Chem Biol,2019,15(7):681-689. 15 Rowland EA,Snowden CK,Cristea IM.Protein lipoylation:an evolutionarily conserved metabolic regulator of health and disease[J].Curr Opin Chem Biol,2018,42:76-85. 16 Li X,Dai Z,Liu J,et al.Characterization of the functional effects of ferredoxin 1 as a cuproptosis biomarker in cancer[J].Front Genet,2022,13:969856. 17 Sha S,Si L,Wu X,et al.Prognostic analysis of cuproptosis-related gene in triple-negative breast cancer[J].Front Immunol,2022,13:922780. 18 Xu B,Hu X,Feng J,et al.Chinese expert consensus on the clinical diagnosis and treatment of advanced breast cancer(2018)[J].Cancer,2020,126(S16):3867-3882. 19 Kamiya T.Copper in the tumor micro environment and tumor metastasis[J].J Clin Biochem Nutr,2022,71(1):22-28. 20 Baharvand M,Manifar S,Akkafan R,et al.Serum levels of ferritin,copper,and zinc in patients with oral cancer[J].Biomed J,2014,37(5):331-356. 21 Booth BA,Sartorelli AC.Synergistic interaction of kethoxal bis(thiosemicarbazone)and cupric ions in sarcoma 180[J].Nature,1966,210(5031):104-105. 22 Li Y.Copper homeostasis:Emerging target for cancer treatment[J].IUBMB Life,2020,72(9):1900-1908. 23 Goodman VL,Brewer GJ,Merajver SD.Control of copper status for cancer therapy[J].Current cancer drug targets,2005(7):543-549. 24 Liang ZD,Long Y,Tsai WB,et al.Mechanistic basis for overcoming platinum resistance using copper chelating agents[J].Mol Cancer Ther,2012,11(11):2483-2494. 25 Yip NC,Fombon IS,Liu P,et al.Disulfiram modulated ROS-MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties[J].Br J Cancer,2011,104(10):1564-1574. 26 Allensworth JL,Evans MK,Bertucci F,et al.Disulfiram(DSF)acts as a copper ionophore to induce copper-dependent oxidative stress and mediate anti-tumor efficacy in inflammatory breast cancer[J].Mol Oncol,2015,9(6):1155-1168. 27 McMahon A,Chen W,Li F.Old wine in new bottles:Advanced drug delivery systems for disulfiram-based cancer therapy[J].J Control Release,2020,319:352-359. 28 Han D,Wu G,Chang C,et al.Disulfiram inhibits TGF-β-induced epithelial-mesenchymal transition and stem-like features in breast cancer via ERK/NF-κB/Snail pathway[J].Oncotarget,2015,6(38):40907-40919. 29 Feng Y,Zeng JW,Ma Q,et al.Serum copper and zinc levels in breast cancer:A meta-analysis[J].J Trace Elem Med Biol,2020,62:126629. 30 MacDonald G,Nalvarte I,Smirnova T,et al.Memo is a copper-dependent redox protein with an essential role in migration and metastasis[J].Sci Signal,2014,7(329):ra56. 31 Li L,Li L,Sun Q.High expression of cuproptosis-related SLC31A1 gene in relation to unfavorable outcome and deregulated immune cell infiltration in breast cancer:an analysis based on public databases[J].BMC Bioinformatics,2022,23(1):1-15. 32 Blockhuys S,Wittung-Stafshede P.Copper chaperone Atox1 plays role in breast cancer cell migration[J].Biochem Biophys Res Commun,2017,483(1):301-304. 33 Ahn SG,Dong SM,Oshima A,et al.LOXL2 expression is associated with invasiveness and negatively influences survival in breast cancer patients[J].Breast Cancer Res Treat.2013;141(1):89-99. 34 Karginova O,Weekley CM,Raoul A,et al.Inhibition of copper transport induces apoptosis in triple-negative breast cancer cells and suppresses tumor angiogenesis[J].Mol Cancer Ther,2019,18(5):873-885. 35 Liu L,Yi J,Yuan J,et al.FOXO1 overexpression is correlated with poor prognosis in epithelial ovarian cancer[J].Cancer Biomark,2020,28(1):1-8. 36 Zeng R,Peng B,Peng E.Downregulated copper homeostasis-related gene FOXO1 as a novel indicator for the prognosis and immune response of breast cancer.[J].J Immunol Res,2022,2022:9140461. 37 Feng Q,Zhang Y,Zhang W,et al.Tumor-targeted and multi-stimuli responsive drug delivery system for near-infrared light induced chemo-phototherapy and photoacoustic tomography[J].Acta Biomaterialia,2016,38:129-142. 38 Shrestha S,Wu J,Sah B,et al.X-ray induced photodynamic therapy with copper-cysteamine nanoparticles in mice tumors[J].Proc Natl Acad Sci U S A.2019;116(34):16823-16828. 39 Zheng R,Cheng Y,et al.Biodegradable copper-based nanoparticles augmented chemodynamic therapy through deep penetration and suppressing antioxidant activity in tumors[J].Adv Healthc Mater,2021,10(14):e2100412. 40 Voli F,Valli E,Lerra L,et al.Intratumoral copper modulates PD-L1 expression and influences tumor immune evasion[J].Cancer Res,2020,80(19):41. |
[1] | ZHANG Xin, WU Xianmei, LI Hong, LIU Xiaozhou, KONG Dewen, CHEN Zhuo. The disease burden of breast cancer attributed to metabolic risk factors in the Chinese female population,from 1990 to 2019 [J]. Journal of Practical Oncology, 2023, 37(2): 107-111. |
[2] | YU Yinping, LIN Jianan, WANG Lizhong, JIANG Weihua. Effects of cancer-derived exosomes on the biological beharior of breast cancer MCF-7 cells [J]. Journal of Practical Oncology, 2023, 37(1): 26-31. |
[3] | JIAO Chong, SHI Yuxin, XU Haoyi, MA Binlin, DONG Chao. Study of the effect of metformin on prognosis of different subtypes of breast cancer patients with type 2 diabetes mellitus [J]. Journal of Practical Oncology, 2022, 36(6): 531-537. |
[4] | WU Ruiyue, ZHU Kaili, YANG Jingru, LING Xiaoling. Clinical research progress of breast cancer with low HER2 expression [J]. Journal of Practical Oncology, 2022, 36(6): 570-575. |
[5] | KANG Ziman, YANG Danlin, SUN Jiannan. Progress of breast MRI image texture analysis in breast cancer [J]. Journal of Practical Oncology, 2022, 36(5): 472-476. |
[6] | LI Zhihui, LI Zhigao. Research progress of T-DM1 in treatment of HER2 positive breast cancer [J]. Journal of Practical Oncology, 2022, 36(5): 477-482. |
[7] | CHEN Jiayi, BAI Yanling. The influence of body mass index and body position fixation in breast cancer patients post-operative intensity modulated radiation therapy setup error [J]. Journal of Practical Oncology, 2022, 36(4): 327-331. |
[8] | ZHAO Danni, YAN Shi, CAI Li. Research progress on follow - up and drug side effect management strategy of breast cancer [J]. Journal of Practical Oncology, 2022, 36(4): 369-373. |
[9] | ZONG Yuxuan, PANG Da. Research progress of heat shock protein 90 in the occurrence,development and treatment of breast cancer [J]. Journal of Practical Oncology, 2022, 36(4): 381-385. |
[10] | YANG Zihan, XU Shouping, PANG Da. Characteristics of breast cancer metastases to outer triangle tissue and its influencing factors [J]. Journal of Practical Oncology, 2022, 36(3): 226-232. |
[11] | HE Weidan, LI Zhigao. FSIP1 promotes migration and invasion of breast cancer cells and leads to poor prognosis of patients [J]. Journal of Practical Oncology, 2022, 36(3): 233-238. |
[12] | LIU Xinxin, YAO Xinhui, SUN Yuefeng, MIU Meiqi, CHEN Jing. Research progress in the role of chemokine CCL20 in breast cancer microenvironment [J]. Journal of Practical Oncology, 2022, 36(3): 250-254. |
[13] | SUN Yuanyuan, ZHANG Ningzhi, CAO Mengru. The mechanism and treatment progress of breast cancer lung metastasis [J]. Journal of Practical Oncology, 2022, 36(2): 173-177. |
[14] | HOU Jianxun, WANG Hongbin. Research progress on the influence of exosomes in the integration of breast cancer diagnosis and treatment [J]. Journal of Practical Oncology, 2022, 36(2): 178-182. |
[15] | CHEN He, WANG Qiucheng, CHENG Wen. The application progress of automatic breast ultrasound diagnosis system in breast cancer [J]. Journal of Practical Oncology, 2022, 36(2): 193-196. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||