1 Chen WQ,Zheng RS,Baade PD,et al.Cancer statistics in China,2015[J].CA Cancer J Clin,2016,66(2):115-132. 2 郎锦义,王培,吴大可,等.2015年中国大陆放疗基本情况调查研究[J].中华放射肿瘤学杂志,2016,25(6):541-545. 3 王卫东,郞锦义.基于生命/影像组学和人工智能的精确放射治疗:思考与展望[J].中国肿瘤临床,2018,45(12):4183-4186. 4 Deo RC.Machine learning in medicine[J].Circulation,2015,132(20):1920-1921. 5 兰欣,卫荣,蔡宏伟,等.机器学习算法在医疗领域中的应用[J].医疗卫生装备,2019,40(3):93-97. 6 Trifiletti DM,Showalter TN.Big data and comparative effectiveness research in radiation oncology:synergy and accelerated discovery[J].Front Oncol,2015,5:274. 7 Valdes G,Simonec B,Chen J,et al.Clinical decision support of radiotherapy treatment planning:A data-driven machine learning strategy for patient-specific dosimetric decision making[J].Radiother Oncol,2017,125(3):392-397. 8 Kress MA,Jensen RE,Tsai HT,et al.Radiationtherapy at the end of life:a population-based study examining palliative treatment intensity[J].Radiat Oncol,2015,10:15. 9 Langendijk JA,Lambin P,De Ruysscher D,et al.Selection of patients for radiotherapy with protons aiming at reduction of side effects:The model-based approach[J].Radiother Oncol,2013,107(3):267-273. 10 Holmes OE,Gratton J,Szanto J,et al.Reducing errors in prostate tracking with an improved fiducial implantation protocol for CyberKnife based stereotactic body radiotherapy(SBRT)[J].J Radiosurg SBRT,2018,5(3):217-227. 11 Liang Z,Liu H,Xue J,et al.Evaluation of the intra-and interfractional tumor motion and variability by fiducial-based real-time tracking in liver stereotactic body radiation therapy[J].J Appl Clin Med Phys,2018,19(3):94-100. 12 Dunn L,Kenny J.A software platform for statistical evaluation of patient respiratory patterns in radiation therapy[J].Phys Med,2017,42:135-140. 13 Reitz D,Carl G,Schönecker S,et al.Real-time intra-fraction motion management in breast cancer radiotherapy:analysis of 2028 treatment sessions[J].Radiat Oncol,2018,13(1):128. 14 Laurent R,Henriet J,Salomon M,et al.Simulation of lung motions using an artificial neural network[J].Cancer Radiother,2011,15(2):123-129. 15 Isaksson M,Jalden J,Murphy MJ.On using an adaptive neural network to predict lung tumor motion during respiration for radiotherapy applications[J].Med Phys,2005,32(12):3801-3809. 16 Powles J,Hodson H.Google deep mind and healthcare in an age of algorithms[J].Health Technol(Berl),2017,7(4):351-367. 17 Sims R,Isambert A,Grégoire V,et al.A pre-clinical assessment of an atlas-based automatic segmentation tool for the head and neck[J].Radiother Oncol,2009,93(3):474-478. 18 Lin L,Dou Q,Jin YM,et al.Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma[J].Radiology,2019,291(3):677-686. 19 张艺宝,蒋瑶,岳海振,等.利用VMAT模型基于知识IMRT计划半自动优化[J].中华放射肿瘤学杂志,2017,26(2):178-181. 20 Fogliata A,Reggiori G,Stravato A,et al.RapidPlan head and neck model:the objectives and possible clinical benefit[J].Radiat Oncol,2017,12(1):73-85. 21 Wu B,Pang D,Simari P,et al.Using overlap volume histogram and IMRT plan data to guide and automate VMAT planning:a head-and-neck case study[J].Med Phys,2013,40(2):21714. 22 Nawa K,Haga A,Nomoto A,et al.Evaluation of a commercial automatic treatment planning system for prostate cancers[J].Med Dosim,2017,42(3):203-209. 23 Krayenbuehl J,Norton I,Studer G,et al.Evaluation of an automated knowledge based treatment planning system for head and neck[J].Radiat Oncol,2015,10(1):226. 24 辛欣,李厨荣,黎杰,等.鼻咽癌IMRT自动计划与人工计划比较[J].中华放射肿瘤学杂志,2018,27(12):1072-1077. 25 吴骏翔,康盛伟,王培,等.宫颈癌术后放疗中自动计划与人工计划的剂量学比较[J].中华放射医学与防护杂志,2018,38(1):26-31. 26 程志矗,李定杰,吴慧,等.MdaccAutoPlan软件在鼻咽癌调强放疗计划设计的应用分析[J].中华放射医学与防护杂志,2018,38(4):285-290. 27 Zhu XF,Ge YR,Li TR,et al.A planning quality evaluation tool for prostate adaptive IMRT based on machine learning[J].Med Phys,2011,38(21):719-726. 28 孔繁图,麦燕华,亓孟科,等.基于神经网络学习方法的放疗计划三维剂量分布预测[J].南方医科大学学报,2018,38(6):683-690. 29 杨瑞杰,张喜乐,刘路,等.2010例调强放疗患者计划剂量验证结果分析[J].中华放射医学与防护杂志,2016,36(12):917-921. 30 王清鑫,戴建荣,张可,等.容积调强旋转放疗的计划验证通过率对多叶准直器位置误差的灵敏度[J].中华放射医学与防护杂志,2013,33(4):388-391. 31 Nelms BE,Zhen H,Tome WA.Per-beam planar IMRT QA passing rates do not predict clinically relevant patient dose errors[J].Med Phys,2011,38(2):1037-1044. 32 Valdes G,Scheuermann R,Hung CY,et al.A mathematical framework for virtual IMRT QA using machine learning[J].Med Phys,2016,43(7):4323-4334. 33 Valdes G,Chan MF,Lim SB,et al.IMRT QA using machine learning:A multi-institutional validation[J].J Appl Clin Med Phys,2017,18(5):279-284. |