1 Bray F,Laversanne M,Sung H,et al.Global cancer statistics 2022:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2024,74(3):229-263. 2 Zhang J,Cai D,Hong S.Prevalence and prognosis of bone metastases in common solid cancers at initial diagnosis:a population-based study[J].BMJ Open,2023,13(10):e069908. 3 Hardtstock F,Kocaata Z,Wilke T,et al.Healthcare resource utilization and associated cost of patients with bone metastases from solid tumors who are naïve to bone-targeting agents:a comparative analysis of patients with and without skeletal-related events[J].Eur J Health Econ,2021,22(2):243-254. 4 Ulas A,Bilici A,Durnali A,et al.Risk factors for skeletal-related events(SREs)and factors affecting SRE-free survival for nonsmall cell lung cancer patients with bone metastases[J].Tumour Biol,2016,37(1):1131-1140. 5 Sarnella A,Ferrara Y,Albanese S,et al.Inhibition of bone marrow-mesenchymal stem cell-induced carbonic anhydrase IX potentiates chemotherapy efficacy in triple-negative breast cancer cells[J].Cells,2023,12(2):298. 6 Alraouji NN,Colak D,Al-Mohanna FH,et al.Endogenous osteoprotegerin(OPG)represses ERα and promotes stemness and chemoresistance in breast cancer cells[J].Cell Death Discov,2024,10(1):377. 7 Wu Q,Tian P,He D,et al.SCUBE2 mediates bone metastasis of luminal breast cancer by modulating immune-suppressive osteoblastic niches[J].Cell Res,2023,33(6):464-478. 8 Özcan G.SCUBE2 as a marker of resistance to taxane-based neoadjuvant chemotherapy and a potential therapeutic target in breast cancer[J].Eur J Breast Health,2023,19(1):45-54. 9 Zheng H,Bae Y,Kasimir-Bauer S,et al.Therapeutic antibody targeting tumor-and osteoblastic niche-derived jagged1 sensitizes bone metastasis to chemotherapy[J].Cancer Cell,2017,32(6):731-747.e6. 10 Carlson P,Dasgupta A,Grzelak CA,et al.Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy[J].Nat Cell Biol,2019,21(2):238-250. 11 James JJ,Evans AJ,Pinder SE,et al.Bone metastases from breast carcinoma:histopathological-radiological correlations and prognostic features[J].Br J Cancer,2003,89(4):660-665. 12 Buschhaus JM,Rajendran S,Chen S,et al.Bone marrow mesenchymal stem cells induce metabolic plasticity in estrogen receptor-positive breast cancer[J].Mol Cancer Res,2023,21(5):458-471. 13 Buschhaus JM,Rajendran S,Humphries BA,et al.Effects of iron modulation on mesenchymal stem cell-induced drug resistance in estrogen receptor-positive breast cancer[J].Oncogene,2022,41(29):3705-3718. 14 Tsoi H,Man EPS,Chau KM,et al.Targeting the IL-6/STAT3 signalling cascade to reverse tamoxifen resistance in estrogen receptor positive breast cancer[J].Cancers(Basel),2021,13(7):1511. 15 Lu Y,Zhang J,Dai J,et al.Osteoblasts induce prostate cancer proliferation and PSA expression through interleukin-6-mediated activation of the androgen receptor[J].Clin Exp Metastasis,2004,21(5):399-408. 16 Bado IL,Zhang W,Hu J,et al.The bone microenvironment increases phenotypic plasticity of ER(+)breast cancer cells[J].Dev Cell,2021,56(8):1100-1117. 17 Nakatsuji M,Fujimori K.Adipocyte-conditioned medium induces tamoxifen resistance by activating PI3K/Akt/mTOR pathway in estrogen receptor-positive breast cancer cells[J].Biochim Biophys Acta Mol Cell Res,2024,1871(7):119821. 18 Traina TA,Miller K,Yardley DA,et al.Enzalutamide for the treatment of androgen receptor-expressing triple-negative breast cancer[J].J Clin Oncol,2018,36(9):884-890. 19 孙红,侯佳林,蔡加琴,等.SUMO E3连接酶介导雄激素受体的转录促进乳腺癌他莫昔芬耐药[J].中国临床药理学与治疗学,2021,26(3):285-291. 20 Su S,Cao J,Meng X,et al.Enzalutamide-induced and PTH1R-mediated TGFBR2 degradation in osteoblasts confers resistance in prostate cancer bone metastases[J].Cancer Lett,2022,525:170-178. 21 Brauneck E,Leonhardt LG,Assemissen AM,et al.Expression of the TIGIT axis and the CD39/CD73 purinergic pathway in bone metastasis-derived immune cells[J].Cancer Immunol Immunother,2025,74(6):182. 22 Xu F,Sunderland A,Zhou Y,et al.Blockade of CD112R and TIGIT signaling sensitizes human natural killer cell functions[J].Cancer Immunol Immunother,2017,66(10):1367-1375. 23 Fan H,Xu Z,Yao K,et al.Osteoclast cancer cell metabolic cross-talk confers PARP inhibitor resistance in bone metastatic breast cancer[J].Cancer Res,2024,84(3):449-467. 24 Cheung A,Chenoweth AM,Johansson A,et al.Anti-EGFR antibody-drug conjugate carrying an inhibitor targeting CDK restricts triple-negative breast cancer growth[J].Clin Cancer Res,2024,30(15):3298-3315. 25 Hsu DS,Hwang WL,Yuh CH,et al.Lymphotoxin-β interacts with methylated EGFR to mediate acquired resistance to cetuximab in head and neck cancer[J].Clin Cancer Res,2017,23(15):4388-4401. 26 Wang X,Zhang T,Zheng B,et al.Lymphotoxin-β promotes breast cancer bone metastasis colonization and osteolytic outgrowth[J].Nat Cell Biol,2024,26(9):1597-1612. 27 Arellano DL,Juárez P,Verdugo-Meza A,et al.Bone microenvironment-suppressed T cells increase osteoclast formation and osteolytic bone metastases in mice[J].J Bone Miner Res,2022,37(8):1446-1463. 28 Monteran L,Ershaid N,Scharff Y,et al.Combining TIGIT blockade with MDSC inhibition hinders breast cancer bone metastasis by activating antitumor immunity[J].Cancer Discov,2024,14(7):1252-1275. 29 Park S,Choi S,Shimpi AA,et al.Collagen mineralization decreases NK cell-mediated cytotoxicity of breast cancer cells via increased glycocalyx thickness[J].Adv Mater,2024,36(43):e2311505. 30 Wang Y,Xu Z,Wu KL,et al.Siglec-15/sialic acid axis as a central glyco-immune checkpoint in breast cancer bone metastasis[J].Proc Natl Acad Sci USA,2024,121(5):e2312929121. 31 Shi T,Liu W,Luo Y,et al.CHI3L3(+)immature neutrophils inhibit anti-tumor immunity and impede immune checkpoint blockade therapy in bone metastases[J].Cancer Cell,2025,43(10):1937-1957.ell. 32 Cheng JN,Jin Z,Su C,et al.Bone metastases diminish extraosseous response to checkpoint blockade immunotherapy through osteopontin-producing osteoclasts[J].Cancer Cell,2025,43(6):1093-1107. 33 Glaser DE,Curtis MB,Sariano PA,et al.Organ-on-a-chip model of vascularized human bone marrow niches[J].Biomaterials,2022,280:121245. 34 Huang Z,Yu P,Tang J.Characterization of triple-negative breast cancer MDA-MB-231 cell spheroid model[J].Onco Targets Ther,2020,13:5395-5405. 35 Mohseni Garakani M,Cooke ME,Weber MH,et al.A 3D,compartmental tumor-stromal microenvironment model of patient-derived bone metastasis[J].Int J Mol Sci,2022,24(1):160. 36 Eyre R,Alférez DG,Santiago-Gómez A,et al.Microenvironmental IL1β promotes breast cancer metastatic colonisation in the bone via activation of Wnt signalling[J].Nat Commun,2019,10(1):5016. 37 Jasuja H,Solaymani Mohammadi F,Kim J,et al.Patient-derived breast cancer bone metastasis in vitro model using bone-mimetic nanoclay scaffolds[J].J Tissue Eng Regen Med,2023,2023:5753666. 38 Farhoodi HP,Segaliny AI,Wagoner ZW,et al.Optimization of a syngeneic murine model of bone metastasis[J].J Bone Oncol,2020,23:100298. 39 Delaloge S,Pérol D,Courtinard C,et al.Paclitaxel plus bevacizumab or paclitaxel as first-line treatment for HER2-negative metastatic breast cancer in a multicenter national observational study[J].Ann Oncol,2016,27(9):1725-1732. 40 穆玉晶,冯雪,孔健达,等.CDK4/6抑制剂联合内分泌疗法治疗HR+/HER2-乳腺癌疗效和安全性的Meta分析[J].中国循证医学杂志,2024,24(3):280-287. 41 王帅,黎其庆,李瑞,等.纳米粒子在乳腺癌诊断和治疗中的应用进展[J].实用肿瘤学杂志,2025,39(02):151-156. 42 Mushtaq A,Li L,Grøndahl L,et al.Targeted nanoparticles based on alendronate polyethylene glycol conjugated chitosan for the delivery of siRNA and curcumin for bone metastasized breast cancer applications[J].Macromol Biosci,2024,24(2):e2300268. 43 Rocas P,Fernández Y,García-Aranda N,et al.Improved pharmacokinetic profile of lipophilic anti-cancer drugs using ανβ3-targeted polyurethane-polyurea nanoparticles[J].Nanomedicine,2018,14(2):257-267. 44 Chen C,Shen M,Liao H,et al.A paclitaxel and microRNA-124 coloaded stepped cleavable nanosystem against triple negative breast cancer[J].J Nanobiotechnology,2021,19(1):55. |