Marine dolomite cement is widely developed in the Precambrian era,whereas its occurrence in the Phanerozoic is scarce. Precambrian marine dolomite cement has attracted extensive attention in recent years due to its diversity,complex origins,and potential implications for Precambrian seawater chemistry. Research on Precambrian marine dolomite cement mainly focuses on two aspects: one is the formation mechanism through mineralogical analysis,and the other is the investigation into the unique Precambrian‘aragonite-dolomite sea' conditions as reflected by marine dolomite cement. The origin of marine dolomite cement incorporates both primary precipitation and mimetic dolomitization. However,due to a lack of reliable geochemical evidence,there is ongoing controversy in this field. In addition,both the precipitation mechanism of the primary dolomite and the corresponding seawater chemical conditions remain unclear. The identification of precursor minerals for mimetic dolomite is controversial. Based on previous studies,it can be summarized the spatial and temporal distribution,petrological and mineralogical characteristics,and geochemical characteristics. Subsequently,the current research status on the formation mechanism of marine dolomite cements from three aspects,including primary precipitation,secondary replacement,and growth assemblage morphology. Finally,it can be proposed that three aspects should be enhanced: (1)The genesis of diverse types of marine dolomite cements should be investigated based on the principles of mineral nucleation and growth theory,combining with micro area or in-situ geochemical analysis;(2)he specific contribution of microorganisms to the formation of marine dolomite cements requires assessment;(3)To gain a comprehensive understanding of the evolution of Precambrian seawater properties,exploration of the origin of marine dolomite cement is imperative.
As climate models are increasingly applied in palaeoclimate studies,the reconstruction of more accurate palaeogeographic boundary conditions has become a key factor in understanding deep-time climate change mechanisms. However,the uncertainty in this reconstruction process has received little attention. This study investigates this uncertainty and its impact on model simulation results,based on reconstruction methods and data selection for palaeo-sea-land distribution,palaeo-sea depth,and palaeo-topography. Our results show that: (1)When reconstructing sea-land distribution,choice of reference plate movement models significantly affects the latitude and longitude of the reconstructed plates,so this demonstrate that model selection should align with research goals. Moreover,accurate correction of sea-land distribution requires multiple palaeoenvironmental proxy indicators,considering their uncertainties. (2)The reconstruction of palaeo-sea depth is more uncertain due to its complex process. Updating the oceanic crust age,choosing a depth-crust age relationship model,selecting a sediment model,and adjusting depth in key areas can all lead to different ocean depth reconstruction results. In particular,special attention should be paid to critical areas like sea channels,the state of this areas directly affect ocean current patterns and temperature-salinity changes in some ocean basins. (3)The uncertainty of palaeo-topography reconstruction is mainly influenced by factors such as the richness and uncertainty of height proxy indicators. (4)Correcting sea-land distribution and reconstructing sea depth leads to differences in basin size and seabed topography. These differences directly impact ocean currents and air-sea exchanges. In summary,uncertainty arises at every step of the palaeogeographic boundary conditions reconstruction process,which will greatly affect the accuracy of model output. To mitigate this,optimizing reconstructions by adding more proxy indicators will be required. Additionally,using multi-model results and geological records for verification is critical when analyzing climate model output,involving palaeogeographic boundary uncertainty.